
Ruby
Notes for ProfessionalsRuby®

Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial Ruby® group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

200+ pages
of professional hints and tricks

https://goalkicker.com
https://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with Ruby Language 2 ..
Section 1.1: Hello World 2 ...
Section 1.2: Hello World as a Self-Executable File—using Shebang (Unix-like operating systems only)

2 ..
Section 1.3: Hello World from IRB 3 ..
Section 1.4: Hello World without source files 3 ..
Section 1.5: Hello World with tk 3 ..
Section 1.6: My First Method 4 ...

Chapter 2: Casting (type conversion) 6 ...
Section 2.1: Casting to a Float 6 ..
Section 2.2: Casting to a String 6 ..
Section 2.3: Casting to an Integer 6 ..
Section 2.4: Floats and Integers 6 ...

Chapter 3: Operators 8 ..
Section 3.1: Operator Precedence and Methods 8 ..
Section 3.2: Case equality operator (===) 10 ...
Section 3.3: Safe Navigation Operator 11 ..
Section 3.4: Assignment Operators 11 ...
Section 3.5: Comparison Operators 12 ..

Chapter 4: Variable Scope and Visibility 13 ...
Section 4.1: Class Variables 13 ..
Section 4.2: Local Variables 14 ...
Section 4.3: Global Variables 15 ..
Section 4.4: Instance Variables 16 ..

Chapter 5: Environment Variables 18 ..
Section 5.1: Sample to get user profile path 18 ...

Chapter 6: Constants 19 ..
Section 6.1: Define a constant 19 ..
Section 6.2: Modify a Constant 19 ..
Section 6.3: Constants cannot be defined in methods 19 ..
Section 6.4: Define and change constants in a class 19 ..

Chapter 7: Special Constants in Ruby 20 ..
Section 7.1: __FILE__ 20 ..
Section 7.2: __dir__ 20 ...
Section 7.3: $PROGRAM_NAME or $0 20 ...
Section 7.4: $$ 20 ..
Section 7.5: $1, $2, etc 20 ..
Section 7.6: ARGV or $* 20 ...
Section 7.7: STDIN 20 ...
Section 7.8: STDOUT 20 ...
Section 7.9: STDERR 20 ..
Section 7.10: $stderr 21 ..
Section 7.11: $stdout 21 ...
Section 7.12: $stdin 21 ..
Section 7.13: ENV 21 ..

Chapter 8: Comments 22 ..
Section 8.1: Single & Multiple line comments 22 ..

Chapter 9: Arrays 23 ...
Section 9.1: Create Array of Strings 23 ...
Section 9.2: Create Array with Array::new 23 ..
Section 9.3: Create Array of Symbols 24 ...
Section 9.4: Manipulating Array Elements 24 ..
Section 9.5: Accessing elements 25 ..
Section 9.6: Creating an Array with the literal constructor [] 26 ..
Section 9.7: Decomposition 26 ..
Section 9.8: Arrays union, intersection and dierence 27 ..
Section 9.9: Remove all nil elements from an array with #compact 28 ..
Section 9.10: Get all combinations / permutations of an array 28 ...
Section 9.11: Inject, reduce 29 ..
Section 9.12: Filtering arrays 30 ..
Section 9.13: #map 30 ..
Section 9.14: Arrays and the splat (*) operator 31 ..
Section 9.15: Two-dimensional array 31 ..
Section 9.16: Turn multi-dimensional array into a one-dimensional (flattened) array 32 ..
Section 9.17: Get unique array elements 32 ...
Section 9.18: Create Array of numbers 32 ...
Section 9.19: Create an Array of consecutive numbers or letters 33 ..
Section 9.20: Cast to Array from any object 33 ..

Chapter 10: Multidimensional Arrays 35 ..
Section 10.1: Initializing a 2D array 35 ...
Section 10.2: Initializing a 3D array 35 ..
Section 10.3: Accessing a nested array 35 ...
Section 10.4: Array flattening 35 ...

Chapter 11: Strings 37 ..
Section 11.1: Dierence between single-quoted and double-quoted String literals 37 ..
Section 11.2: Creating a String 37 ..
Section 11.3: Case manipulation 38 ...
Section 11.4: String concatenation 38 ...
Section 11.5: Positioning strings 39 ..
Section 11.6: Splitting a String 40 ...
Section 11.7: String starts with 40 ...
Section 11.8: Joining Strings 40 ..
Section 11.9: String interpolation 41 ..
Section 11.10: String ends with 41 ...
Section 11.11: Formatted strings 41 ..
Section 11.12: String Substitution 41 ...
Section 11.13: Multiline strings 41 ..
Section 11.14: String character replacements 42 ..
Section 11.15: Understanding the data in a string 43 ...

Chapter 12: DateTime 44 ...
Section 12.1: DateTime from string 44 ..
Section 12.2: New 44 ...
Section 12.3: Add/subtract days to DateTime 44 ..

Chapter 13: Time 46 ..
Section 13.1: How to use the strftime method 46 ...

Section 13.2: Creating time objects 46 ..

Chapter 14: Numbers 47 ..
Section 14.1: Converting a String to Integer 47 ..
Section 14.2: Creating an Integer 47 ...
Section 14.3: Rounding Numbers 47 ...
Section 14.4: Even and Odd Numbers 48 ...
Section 14.5: Rational Numbers 48 ...
Section 14.6: Complex Numbers 48 ...
Section 14.7: Converting a number to a string 49 ...
Section 14.8: Dividing two numbers 49 ...

Chapter 15: Symbols 50 ..
Section 15.1: Creating a Symbol 50 ...
Section 15.2: Converting a String to Symbol 50 ...
Section 15.3: Converting a Symbol to String 51 ...

Chapter 16: Comparable 52 ...
Section 16.1: Rectangle comparable by area 52 ...

Chapter 17: Control Flow 53 ...
Section 17.1: if, elsif, else and end 53 ...
Section 17.2: Case statement 53 ...
Section 17.3: Truthy and Falsy values 55 ...
Section 17.4: Inline if/unless 56 ..
Section 17.5: while, until 56 ...
Section 17.6: Flip-Flop operator 57 ..
Section 17.7: Or-Equals/Conditional assignment operator (||=) 57 ..
Section 17.8: unless 58 ..
Section 17.9: throw, catch 58 ..
Section 17.10: Ternary operator 58 ...
Section 17.11: Loop control with break, next, and redo 59 ...
Section 17.12: return vs. next: non-local return in a block 61 ..
Section 17.13: begin, end 61 ..
Section 17.14: Control flow with logic statements 62 ...

Chapter 18: Methods 63 ..
Section 18.1: Defining a method 63 ...
Section 18.2: Yielding to blocks 63 ..
Section 18.3: Default parameters 64 ...
Section 18.4: Optional parameter(s) (splat operator) 65 ...
Section 18.5: Required default optional parameter mix 65 ..
Section 18.6: Use a function as a block 66 ...
Section 18.7: Single required parameter 66 ...
Section 18.8: Tuple Arguments 66 ...
Section 18.9: Capturing undeclared keyword arguments (double splat) 67 ..
Section 18.10: Multiple required parameters 67 ...
Section 18.11: Method Definitions are Expressions 67 ..

Chapter 19: Hashes 69 ...
Section 19.1: Creating a hash 69 ..
Section 19.2: Setting Default Values 70 ..
Section 19.3: Accessing Values 71 ...
Section 19.4: Automatically creating a Deep Hash 72 ..
Section 19.5: Iterating Over a Hash 73 ...
Section 19.6: Filtering hashes 74 ..

Section 19.7: Conversion to and from Arrays 74 ...
Section 19.8: Overriding hash function 74 ..
Section 19.9: Getting all keys or values of hash 75 ...
Section 19.10: Modifying keys and values 75 ...
Section 19.11: Set Operations on Hashes 76 ...

Chapter 20: Blocks and Procs and Lambdas 77 ...
Section 20.1: Lambdas 77 ..
Section 20.2: Partial Application and Currying 78 ..
Section 20.3: Objects as block arguments to methods 80 ...
Section 20.4: Converting to Proc 80 ...
Section 20.5: Blocks 81 ..

Chapter 21: Iteration 83 ...
Section 21.1: Each 83 ...
Section 21.2: Implementation in a class 84 ..
Section 21.3: Iterating over complex objects 84 ..
Section 21.4: For iterator 85 ...
Section 21.5: Iteration with index 85 ..
Section 21.6: Map 86 ...

Chapter 22: Exceptions 87 ..
Section 22.1: Creating a custom exception type 87 ..
Section 22.2: Handling multiple exceptions 87 ..
Section 22.3: Handling an exception 88 ...
Section 22.4: Raising an exception 90 ..
Section 22.5: Adding information to (custom) exceptions 90 ..

Chapter 23: Enumerators 91 ...
Section 23.1: Custom enumerators 91 ..
Section 23.2: Existing methods 91 ...
Section 23.3: Rewinding 91 ..

Chapter 24: Enumerable in Ruby 93 ...
Section 24.1: Enumerable module 93 ..

Chapter 25: Classes 96 ...
Section 25.1: Constructor 96 ..
Section 25.2: Creating a class 96 ..
Section 25.3: Access Levels 96 ..
Section 25.4: Class Methods types 98 ..
Section 25.5: Accessing instance variables with getters and setters 100 ..
Section 25.6: New, allocate, and initialize 101 ...
Section 25.7: Dynamic class creation 101 ...
Section 25.8: Class and instance variables 102 ..

Chapter 26: Inheritance 104 ...
Section 26.1: Subclasses 104 ..
Section 26.2: What is inherited? 104 ...
Section 26.3: Multiple Inheritance 106 ..
Section 26.4: Mixins 106 ...
Section 26.5: Refactoring existing classes to use Inheritance 107 ..

Chapter 27: method_missing 109 ...
Section 27.1: Catching calls to an undefined method 109 ..
Section 27.2: Use with block 109 ...
Section 27.3: Use with parameter 109 ..

Section 27.4: Using the missing method 110 ...

Chapter 28: Regular Expressions and Regex Based Operations 111 ...
Section 28.1: =~ operator 111 ...
Section 28.2: Regular Expressions in Case Statements 111 ..
Section 28.3: Groups, named and otherwise 111 ..
Section 28.4: Quantifiers 112 ...
Section 28.5: Common quick usage 113 ..
Section 28.6: match? - Boolean Result 113 ...
Section 28.7: Defining a Regexp 113 ..
Section 28.8: Character classes 114 ...

Chapter 29: File and I/O Operations 116 ..
Section 29.1: Writing a string to a file 116 ..
Section 29.2: Reading from STDIN 116 ..
Section 29.3: Reading from arguments with ARGV 116 ...
Section 29.4: Open and closing a file 117 ..
Section 29.5: get a single char of input 117 ...

Chapter 30: Ruby Access Modifiers 118 ...
Section 30.1: Instance Variables and Class Variables 118 ...
Section 30.2: Access Controls 120 ..

Chapter 31: Design Patterns and Idioms in Ruby 123 ...
Section 31.1: Decorator Pattern 123 ..
Section 31.2: Observer 124 ...
Section 31.3: Singleton 125 ...
Section 31.4: Proxy 126 ...

Chapter 32: Loading Source Files 129 ...
Section 32.1: Require files to be loaded only once 129 ...
Section 32.2: Automatically loading source files 129 ...
Section 32.3: Loading optional files 129 ...
Section 32.4: Loading files repeatedly 130 ..
Section 32.5: Loading several files 130 ..

Chapter 33: Thread 131 ..
Section 33.1: Accessing shared resources 131 ...
Section 33.2: Basic Thread Semantics 131 ..
Section 33.3: Terminating a Thread 132 ..
Section 33.4: How to kill a thread 132 ..

Chapter 34: Range 133 ...
Section 34.1: Ranges as Sequences 133 ...
Section 34.2: Iterating over a range 133 ..
Section 34.3: Range between dates 133 ..

Chapter 35: Modules 134 ...
Section 35.1: A simple mixin with include 134 ...
Section 35.2: Modules and Class Composition 134 ...
Section 35.3: Module as Namespace 135 ..
Section 35.4: A simple mixin with extend 135 ..

Chapter 36: Introspection in Ruby 136 ...
Section 36.1: Introspection of class 136 ..
Section 36.2: Lets see some examples 136 ..

Chapter 37: Monkey Patching in Ruby 139 ...
Section 37.1: Changing an existing ruby method 139 ...

Section 37.2: Monkey patching a class 139 ...
Section 37.3: Monkey patching an object 139 ...
Section 37.4: Safe Monkey patching with Refinements 140 ..
Section 37.5: Changing a method with parameters 140 ..
Section 37.6: Adding Functionality 141 ..
Section 37.7: Changing any method 141 ...
Section 37.8: Extending an existing class 141 ..

Chapter 38: Recursion in Ruby 142 ..
Section 38.1: Tail recursion 142 ...
Section 38.2: Recursive function 143 ..

Chapter 39: Splat operator (*) 145 ...
Section 39.1: Variable number of arguments 145 ...
Section 39.2: Coercing arrays into parameter list 145 ...

Chapter 40: JSON with Ruby 146 ..
Section 40.1: Using JSON with Ruby 146 ..
Section 40.2: Using Symbols 146 ..

Chapter 41: Pure RSpec JSON API testing 147 ...
Section 41.1: Testing Serializer object and introducing it to Controller 147 ..

Chapter 42: Gem Creation/Management 150 ...
Section 42.1: Gemspec Files 150 ..
Section 42.2: Building A Gem 151 ...
Section 42.3: Dependencies 151 ...

Chapter 43: rbenv 152 ..
Section 43.1: Uninstalling a Ruby 152 ...
Section 43.2: Install and manage versions of Ruby with rbenv 152 ...

Chapter 44: Gem Usage 154 ...
Section 44.1: Installing ruby gems 154 ...
Section 44.2: Gem installation from github/filesystem 154 ...
Section 44.3: Checking if a required gem is installed from within code 155 ..
Section 44.4: Using a Gemfile and Bundler 156 ..
Section 44.5: Bundler/inline (bundler v1.10 and later) 156 ...

Chapter 45: Singleton Class 158 ...
Section 45.1: Introduction 158 ..
Section 45.2: Inheritance of Singleton Class 158 ..
Section 45.3: Singleton classes 159 ..
Section 45.4: Message Propagation with Singleton Class 159 ..
Section 45.5: Reopening (monkey patching) Singleton Classes 160 ..
Section 45.6: Accessing Singleton Class 161 ...
Section 45.7: Accessing Instance/Class Variables in Singleton Classes 161 ..

Chapter 46: Queue 163 ...
Section 46.1: Multiple Workers One Sink 163 ...
Section 46.2: Converting a Queue into an Array 163 ...
Section 46.3: One Source Multiple Workers 163 ..
Section 46.4: One Source - Pipeline of Work - One Sink 164 ...
Section 46.5: Pushing Data into a Queue - #push 164 ...
Section 46.6: Pulling Data from a Queue - #pop 165 ...
Section 46.7: Synchronization - After a Point in Time 165 ...
Section 46.8: Merging Two Queues 165 ...

Chapter 47: Destructuring 167 ...

Section 47.1: Overview 167 ...
Section 47.2: Destructuring Block Arguments 167 ..

Chapter 48: Struct 168 ...
Section 48.1: Creating new structures for data 168 ..
Section 48.2: Customizing a structure class 168 ...
Section 48.3: Attribute lookup 168 ..

Chapter 49: Metaprogramming 169 ...
Section 49.1: Implementing "with" using instance evaluation 169 ...
Section 49.2: send() method 169 ..
Section 49.3: Defining methods dynamically 170 ...
Section 49.4: Defining methods on instances 171 ..

Chapter 50: Dynamic Evaluation 172 ..
Section 50.1: Instance evaluation 172 ...
Section 50.2: Evaluating a String 172 ...
Section 50.3: Evaluating Inside a Binding 172 ...
Section 50.4: Dynamically Creating Methods from Strings 173 ..

Chapter 51: instance_eval 175 ...
Section 51.1: Instance evaluation 175 ..
Section 51.2: Implementing with 175 ...

Chapter 52: Message Passing 177 ..
Section 52.1: Introduction 177 ..
Section 52.2: Message Passing Through Inheritance Chain 177 ...
Section 52.3: Message Passing Through Module Composition 178 ..
Section 52.4: Interrupting Messages 179 ...

Chapter 53: Keyword Arguments 181 ...
Section 53.1: Using arbitrary keyword arguments with splat operator 181 ...
Section 53.2: Using keyword arguments 182 ..
Section 53.3: Required keyword arguments 183 ..

Chapter 54: Truthiness 184 ..
Section 54.1: All objects may be converted to booleans in Ruby 184 ...
Section 54.2: Truthiness of a value can be used in if-else constructs 184 ...

Chapter 55: Implicit Receivers and Understanding Self 185 ..
Section 55.1: There is always an implicit receiver 185 ..
Section 55.2: Keywords change the implicit receiver 185 ..
Section 55.3: When to use self? 186 ...

Chapter 56: Introspection 188 ..
Section 56.1: View an object's methods 188 ..
Section 56.2: View an object's Instance Variables 189 ...
Section 56.3: View Global and Local Variables 190 ..
Section 56.4: View Class Variables 190 ..

Chapter 57: Refinements 192 ..
Section 57.1: Monkey patching with limited scope 192 ...
Section 57.2: Dual-purpose modules (refinements or global patches) 192 ...
Section 57.3: Dynamic refinements 193 ...

Chapter 58: Catching Exceptions with Begin / Rescue 195 ...
Section 58.1: A Basic Error Handling Block 195 ...
Section 58.2: Saving the Error 195 ..
Section 58.3: Checking for Dierent Errors 196 ..
Section 58.4: Retrying 197 ...

Section 58.5: Checking Whether No Error Was Raised 198 ...
Section 58.6: Code That Should Always Run 198 ..

Chapter 59: Command Line Apps 200 ...
Section 59.1: How to write a command line tool to get the weather by zip code 200 ..

Chapter 60: IRB 201 ..
Section 60.1: Starting an IRB session inside a Ruby script 201 ..
Section 60.2: Basic Usage 201 ..

Chapter 61: ERB 203 ...
Section 61.1: Parsing ERB 203 ..

Chapter 62: Generate a random number 204 ..
Section 62.1: 6 Sided die 204 ..
Section 62.2: Generate a random number from a range (inclusive) 204 ..

Chapter 63: Getting started with Hanami 205 ..
Section 63.1: About Hanami 205 ..
Section 63.2: How to install Hanami? 205 ..
Section 63.3: How to start the server? 206 ..

Chapter 64: OptionParser 208 ..
Section 64.1: Mandatory and optional command line options 208 ...
Section 64.2: Default values 209 ...
Section 64.3: Long descriptions 209 ...

Chapter 65: Operating System or Shell commands 210 ...
Section 65.1: Recommended ways to execute shell code in Ruby: 210 ..
Section 65.2: Clasic ways to execute shell code in Ruby: 211 ..

Chapter 66: C Extensions 213 ..
Section 66.1: Your first extension 213 ..
Section 66.2: Working with C Structs 214 ...
Section 66.3: Writing Inline C - RubyInLine 215 ...

Chapter 67: Debugging 217 ..
Section 67.1: Stepping through code with Pry and Byebug 217 ..

Chapter 68: Ruby Version Manager 218 ..
Section 68.1: How to create gemset 218 ..
Section 68.2: Installing Ruby with RVM 218 ...

Appendix A: Installation 219 ...
Section A.1: Installing Ruby macOS 219 ...
Section A.2: Gems 219 ...
Section A.3: Linux - Compiling from source 220 ..
Section A.4: Linux—Installation using a package manager 220 ..
Section A.5: Windows - Installation using installer 221 ..
Section A.6: Linux - troubleshooting gem install 221 ..

Credits 222 ..

You may also like 226 ..

GoalKicker.com – Ruby® Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

https://goalkicker.com/RubyBook

This Ruby® Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright
of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official Ruby® group(s) or company(s) nor Stack Overflow. All
trademarks and registered trademarks are the property of their respective

company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

https://goalkicker.com/RubyBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 2

Chapter 1: Getting started with Ruby
Language
Version Release Date
2.5.1 2018-03-28

2.4 2016-12-25

2.3 2015-12-25

2.2 2014-12-25

2.1 2013-12-25

2.0 2013-02-24

1.9 2007-12-25

1.8 2003-08-04

1.6.8 2002-12-24

Section 1.1: Hello World

This example assumes Ruby is installed.

Place the following in a file named hello.rb:

puts 'Hello World'

From the command line, type the following command to execute the Ruby code from the source file:

$ ruby hello.rb

This should output:

Hello World

The output will be immediately displayed to the console. Ruby source files don't need to be compiled before being
executed. The Ruby interpreter compiles and executes the Ruby file at runtime.

Section 1.2: Hello World as a Self-Executable File—using
Shebang (Unix-like operating systems only)
You can add an interpreter directive (shebang) to your script. Create a file called hello_world.rb which contains:

#!/usr/bin/env ruby

puts 'Hello World!'

Give the script executable permissions. Here's how to do that in Unix:

$ chmod u+x hello_world.rb

Now you do not need to call the Ruby interpreter explicitly to run your script.

$./hello_world.rb

https://www.ruby-lang.org/en/news/2018/03/28/ruby-2-5-1-released/
https://www.ruby-lang.org/en/news/2016/12/25/ruby-2-4-0-released/
https://www.ruby-lang.org/en/news/2015/12/25/ruby-2-3-0-released/
https://www.ruby-lang.org/en/news/2014/12/25/ruby-2-2-0-released/
https://www.ruby-lang.org/en/news/2013/12/25/ruby-2-1-0-is-released/
https://www.ruby-lang.org/en/news/2013/02/24/ruby-2-0-0-p0-is-released/
https://www.ruby-lang.org/en/news/2007/12/25/ruby-1-9-0-released/
https://www.ruby-lang.org/en/news/2003/08/04/ruby-180-released/
https://www.ruby-lang.org/en/news/2002/12/24/ruby-1-6-8-and-1-8-0-preview-1/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 3

Section 1.3: Hello World from IRB
Alternatively, you can use the Interactive Ruby Shell (IRB) to immediately execute the Ruby statements you
previously wrote in the Ruby file.

Start an IRB session by typing:

$ irb

Then enter the following command:

puts "Hello World"

This results in the following console output (including newline):

Hello World

If you don't want to start a new line, you can use print:

print "Hello World"

Section 1.4: Hello World without source files
Run the command below in a shell after installing Ruby. This shows how you can execute simple Ruby programs
without creating a Ruby file:

ruby -e 'puts "Hello World"'

You can also feed a Ruby program to the interpreter's standard input. One way to do that is to use a here
document in your shell command:

ruby <<END
puts "Hello World"
END

Section 1.5: Hello World with tk
Tk is the standard graphical user interface (GUI) for Ruby. It provides a cross-platform GUI for Ruby programs.

Example code:
require "tk"
TkRoot.new{ title "Hello World!" }
Tk.mainloop

The result:

http://ruby-doc.org/stdlib-2.3.1/libdoc/irb/rdoc/IRB.html
https://en.wikipedia.org/wiki/Here_document
https://en.wikipedia.org/wiki/Here_document
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 4

Step by Step explanation:

require "tk"

Load the tk package.

TkRoot.new{ title "Hello World!" }

Define a widget with the title Hello World

Tk.mainloop

Start the main loop and display the widget.

Section 1.6: My First Method
Overview

Create a new file named my_first_method.rb

Place the following code inside the file:

def hello_world
 puts "Hello world!"
end

hello_world() # or just 'hello_world' (without parenthesis)

Now, from a command line, execute the following:

ruby my_first_method.rb

The output should be:

Hello world!

Explanation

def is a keyword that tells us that we're def-ining a method - in this case, hello_world is the name of our
method.
puts "Hello world!" puts (or pipes to the console) the string Hello world!
end is a keyword that signifies we're ending our definition of the hello_world method

http://i.stack.imgur.com/Y6sLc.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 5

as the hello_world method doesn't accept any arguments, you can omit the parenthesis by invoking the
method

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 6

Chapter 2: Casting (type conversion)
Section 2.1: Casting to a Float
"123.50".to_f #=> 123.5
Float("123.50") #=> 123.5

However, there is a difference when the string is not a valid Float:

"something".to_f #=> 0.0
Float("something") # ArgumentError: invalid value for Float(): "something"

Section 2.2: Casting to a String
123.5.to_s #=> "123.5"
String(123.5) #=> "123.5"

Usually, String() will just call #to_s.

Methods Kernel#sprintf and String#% behave similar to C:

sprintf("%s", 123.5) #=> "123.5"
"%s" % 123.5 #=> "123.5"
"%d" % 123.5 #=> "123"
"%.2f" % 123.5 #=> "123.50"

Section 2.3: Casting to an Integer
"123.50".to_i #=> 123
Integer("123.50") #=> 123

A string will take the value of any integer at its start, but will not take integers from anywhere else:

"123-foo".to_i # => 123
"foo-123".to_i # => 0

However, there is a difference when the string is not a valid Integer:

"something".to_i #=> 0
Integer("something") # ArgumentError: invalid value for Integer(): "something"

Section 2.4: Floats and Integers
1/2 #=> 0

Since we are dividing two integers, the result is an integer. To solve this problem, we need to cast at least one of
those to Float:

1.0 / 2 #=> 0.5
1.to_f / 2 #=> 0.5
1 / Float(2) #=> 0.5

Alternatively, fdiv may be used to return the floating point result of division without explicitly casting either

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 7

operand:

1.fdiv 2 # => 0.5

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 8

Chapter 3: Operators
Section 3.1: Operator Precedence and Methods
From highest to lowest, this is the precedence table for Ruby. High precedence operations happen before low
precedence operations.

╔════════════════════╦═════════════════════════════════╦════════╗
║ Operators ║ Operations ║ Method? ║
╠════════════════════╬═════════════════════════════════╬════════╣
║ . ║ Method call (e.g. foo.bar) ║ ║
║ [] []= ║ Bracket Lookup, Bracket Set ║ ✓¹ ║
║ ! ~ + ║ Boolean NOT, complement, unary plus ║ ✓² ║
║ ** ║ Exponentiation ║ ✓ ║
║ - ║ Unary minus ║ ✓² ║
║ * / % ║ Multiplication, division, modulo ║ ✓ ║
║ + - ║ Addition, subtraction ║ ✓ ║
║ <> ║ Bitwise shift ║ ✓ ║
║ & ║ Bitwise AND ║ ✓ ║
║ | ^ ║ Bitwise OR, Bitwise XOR ║ ✓ ║
║ < <= >= > ║ Comparison ║ ✓ ║
║ <=> == != === =~ !~ ║ Equality, pattern matching, comparison ║ ✓³ ║
║ && ║ Boolean AND ║ ║
║ || ║ Boolean OR ║ ║
║ ║ Inclusive range, Exclusive range ║ ║
║ ? : ║ Ternary operator ║ ║
║ rescue ║ Modifier rescue ║ ║
║ = += -= ║ Assignments ║ ║
║ defined? ║ Defined operator ║ ║
║ not ║ Boolean NOT ║ ║
║ or and ║ Boolean OR, Boolean AND ║ ║
║ if unless while until ║ Modifier if, unless, while, until ║ ║
║ { } ║ Block with braces ║ ║
║ do end ║ Block with do end ║ ║
╚═══════════════════╩═══════════════════════════════════╩═══════╝

Unary + and unary - are for +obj, -obj or -(some_expression).

Modifier-if, modifier-unless, etc. are for the modifier versions of those keywords. For example, this is a modifier-
unless expression:

a += 1 unless a.zero?

Operators with a ✓ may be defined as methods. Most methods are named exactly as the operator is named, for
example:

class Foo
 def **(x)
 puts "Raising to the power of #{x}"
 end
 def <<(y)
 puts "Shifting left by #{y}"
 end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 9

 def !
 puts "Boolean negation"
 end
end

Foo.new ** 2 #=> "Raising to the power of 2"
Foo.new << 3 #=> "Shifting left by 3"
!Foo.new #=> "Boolean negation"

¹ The Bracket Lookup and Bracket Set methods ([] and []=) have their arguments defined after the name, for
example:

class Foo
 def [](x)
 puts "Looking up item #{x}"
 end
 def []=(x,y)
 puts "Setting item #{x} to #{y}"
 end
end

f = Foo.new
f[:cats] = 42 #=> "Setting item cats to 42"
f[17] #=> "Looking up item 17"

² The "unary plus" and "unary minus" operators are defined as methods named +@ and -@, for example

class Foo
 def -@
 puts "unary minus"
 end
 def +@
 puts "unary plus"
 end
end

f = Foo.new
+f #=> "unary plus"
-f #=> "unary minus"

³ In early versions of Ruby the inequality operator != and the non-matching operator !~ could not be defined as
methods. Instead, the method for the corresponding equality operator == or matching operator =~ was invoked,
and the result of that method was boolean inverted by Ruby.

If you do not define your own != or !~ operators the above behavior is still true. However, as of Ruby 1.9.1, those
two operators may also be defined as methods:

class Foo
 def ==(x)
 puts "checking for EQUALITY with #{x}, returning false"
 false
 end
end

f = Foo.new
x = (f == 42) #=> "checking for EQUALITY with 42, returning false"
puts x #=> "false"
x = (f != 42) #=> "checking for EQUALITY with 42, returning false"
puts x #=> "true"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 10

class Foo
 def !=(x)
 puts "Checking for INequality with #{x}"
 end
end

f != 42 #=> "checking for INequality with 42"

Section 3.2: Case equality operator (===)
Also known as triple equals.

This operator does not test equality, but rather tests if the right operand has an IS A relationship with the left
operand. As such, the popular name case equality operator is misleading.

This SO answer describes it thus: the best way to describe a === b is "if I have a drawer labeled a, does it make
sense to put b in it?" In other words, does the set a include the member b?

Examples (source)

(1..5) === 3 # => true
(1..5) === 6 # => false

Integer === 42 # => true
Integer === 'fourtytwo' # => false

/ell/ === 'Hello' # => true
/ell/ === 'Foobar' # => false

Classes that override ===

Many classes override === to provide meaningful semantics in case statements. Some of them are:

╔═══════════════╦════════════════╗
║ Class ║ Synonym for ║
╠══════════════╬═════════════════╣
║ Array ║ == ║
║ ║ ║
║ Date ║ == ║
║ ║ ║
║ Module ║ is_a? ║
║ ║ ║
║ Object ║ == ║
║ ║ ║
║ Range ║ include? ║
║ ║ ║
║ Regexp ║ =~ ║
║ ║ ║
║ String ║ == ║
╚═══════════════╩════════════════╝

Recommended practice

Explicit use of the case equality operator === should be avoided. It doesn't test equality but rather subsumption, and
its use can be confusing. Code is clearer and easier to understand when the synonym method is used instead.

https://en.wikipedia.org/wiki/Is-a
http://stackoverflow.com/a/3422349/1772
http://stackoverflow.com/a/4467823/1772
https://en.wikipedia.org/wiki/Is-a
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 11

Bad
Integer === 42
(1..5) === 3
/ell/ === 'Hello'

Good, uses synonym method
42.is_a?(Integer)
(1..5).include?(3)
/ell/ =~ 'Hello'

Section 3.3: Safe Navigation Operator
Ruby 2.3.0 added the safe navigation operator, &.. This operator is intended to shorten the paradigm of object &&
object.property && object.property.method in conditional statements.

For example, you have a House object with an address property, and you want to find the street_name from the
address. To program this safely to avoid nil errors in older Ruby versions, you'd use code something like this:

if house && house.address && house.address.street_name
 house.address.street_name
end

The safe navigation operator shortens this condition. Instead, you can write:

if house&.address&.street_name
 house.address.street_name
end

Caution:
The safe navigation operator doesn't have exactly the same behavior as the chained conditional. Using the chained
conditional (first example), the if block would not be executed if, say address was false. The safe navigation
operator only recognises nil values, but permits values such as false. If address is false, using the SNO will yield
an error:

house&.address&.street_name
=> undefined method `address' for false:FalseClass

Section 3.4: Assignment Operators
Simple Assignment

= is a simple assignment. It creates a new local variable if the variable was not previously referenced.

x = 3
y = 4 + 5
puts "x is #{x}, y is #{y}"

This will output:

x is 3, y is 9

Parallel Assignment

Variables can also be assigned in parallel, e.g. x, y = 3, 9. This is especially useful for swapping values:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 12

x, y = 3, 9
x, y = y, x
puts "x is #{x}, y is #{y}"

This will output:

x is 9, y is 3

Abbreviated Assignment

It's possible to mix operators and assignment. For example:

x = 1
y = 2
puts "x is #{x}, y is #{y}"

x += y
puts "x is now #{x}"

Shows the following output:

x is 1, y is 2
x is now 3

Various operations can be used in abbreviated assignment:

Operator Description Example Equivalent to
+= Adds and reassigns the variable x += y x = x + y

-= Subtracts and reassigns the variable x -= y x = x - y

*= Multiplies and reassigns the variable x *= y x = x * y

/= Divides and reassigns the variable x /= y x = x / y

%= Divides, takes the remainder, and reassigns the variable x %= y x = x % y

**= Calculates the exponent and reassigns the variable x **= y x = x ** y

Section 3.5: Comparison Operators
Operator Description
== true if the two values are equal.
!= true if the two values are not equal.
< true if the value of the operand on the left is less than the value on the right.
> true if the value of the operand on the left is greater than the value on the right.
>= true if the value of the operand on the left is greater than or equal to the value on the right.
<= true if the value of the operand on the left is less than or equal to the value on the right.

<=>
0 if the value of the operand on the left is equal to the value on the right,
1 if the value of the operand on the left is greater than the value on the right,
-1 if the value of the operand on the left is less than the value on the right.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 13

Chapter 4: Variable Scope and Visibility
Section 4.1: Class Variables
Class variables have a class wide scope, they can be declared anywhere in the class. A variable will be considered a
class variable when prefixed with @@

class Dinosaur
 @@classification = "Like a Reptile, but like a bird"

 def self.classification
 @@classification
 end

 def classification
 @@classification
 end
end

dino = Dinosaur.new
dino.classification
=> "Like a Reptile, but like a bird"

Dinosaur.classification
=> "Like a Reptile, but like a bird"

Class variables are shared between related classes and can be overwritten from a child class

class TRex < Dinosaur
 @@classification = "Big teeth bird!"
end

TRex.classification
=> "Big teeth bird!"

Dinosaur.classification
=> "Big teeth bird!"

This behaviour is unwanted most of the time and can be circumvented by using class-level instance variables.

Class variables defined inside a module will not overwrite their including classes class variables:

module SomethingStrange
 @@classification = "Something Strange"
end

class DuckDinosaur < Dinosaur
 include SomethingStrange
end

DuckDinosaur.class_variables
=> [:@@classification]
SomethingStrange.class_variables
=> [:@@classification]

DuckDinosaur.classification
=> "Big teeth bird!"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 14

Section 4.2: Local Variables
Local variables (unlike the other variable classes) do not have any prefix

local_variable = "local"
p local_variable
=> local

Its scope is dependent on where it has been declared, it can not be used outside the "declaration containers"
scope. For example, if a local variable is declared in a method, it can only be used inside that method.

def some_method
 method_scope_var = "hi there"
 p method_scope_var
end

some_method
hi there
=> hi there

method_scope_var
NameError: undefined local variable or method `method_scope_var'

Of course, local variables are not limited to methods, as a rule of thumb you could say that, as soon as you declare
a variable inside a do ... end block or wrapped in curly braces {} it will be local and scoped to the block it has
been declared in.

2.times do |n|
 local_var = n + 1
 p local_var
end
1
2
=> 2

local_var
NameError: undefined local variable or method `local_var'

However, local variables declared in if or case blocks can be used in the parent-scope:

if true
 usable = "yay"
end

p usable
yay
=> "yay"

While local variables can not be used outside of its block of declaration, it will be passed down to blocks:

my_variable = "foo"

my_variable.split("").each_with_index do |char, i|
 puts "The character in string '#{my_variable}' at index #{i} is #{char}"
end
The character in string 'foo' at index 0 is f
The character in string 'foo' at index 1 is o
The character in string 'foo' at index 2 is o

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 15

=> ["f", "o", "o"]

But not to method / class / module definitions

my_variable = "foo"

def some_method
 puts "you can't use the local variable in here, see? #{my_variable}"
end

some_method
NameError: undefined local variable or method `my_variable'

The variables used for block arguments are (of course) local to the block, but will overshadow previously defined
variables, without overwriting them.

overshadowed = "sunlight"

["darkness"].each do |overshadowed|
 p overshadowed
end
darkness
=> ["darkness"]

p overshadowed
"sunlight"
=> "sunlight"

Section 4.3: Global Variables
Global variables have a global scope and hence, can be used everywhere. Their scope is not dependent on where
they are defined. A variable will be considered global, when prefixed with a $ sign.

$i_am_global = "omg"

class Dinosaur
 def instance_method
 p "global vars can be used everywhere. See? #{$i_am_global}, #{$another_global_var}"
 end

 def self.class_method
 $another_global_var = "srsly?"
 p "global vars can be used everywhere. See? #{$i_am_global}"
 end
end

Dinosaur.class_method
"global vars can be used everywhere. See? omg"
=> "global vars can be used everywhere. See? omg"

dinosaur = Dinosaur.new
dinosaur.instance_method
"global vars can be used everywhere. See? omg, srsly?"
=> "global vars can be used everywhere. See? omg, srsly?"

Since a global variable can be defined everywhere and will be visible everywhere, calling an "undefined" global
variable will return nil instead of raising an error.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 16

p $undefined_var
nil
=> nil

Although global variables are easy to use its usage is strongly discouraged in favour of constants.

Section 4.4: Instance Variables
Instance variables have an object wide scope, they can be declared anywhere in the object, however an instance
variable declared on class level, will only be visible in the class object. A variable will be considered an instance
variable when prefixed with @. Instance variables are used to set and get an objects attributes and will return nil if
not defined.

class Dinosaur
 @base_sound = "rawrr"

 def initialize(sound = nil)
 @sound = sound || self.class.base_sound
 end

 def speak
 @sound
 end

 def try_to_speak
 @base_sound
 end

 def count_and_store_sound_length
 @sound.chars.each_with_index do |char, i|
 @sound_length = i + 1
 p "#{char}: #{sound_length}"
 end
 end

 def sound_length
 @sound_length
 end

 def self.base_sound
 @base_sound
 end
end

dino_1 = Dinosaur.new
dino_2 = Dinosaur.new "grrr"

Dinosaur.base_sound
=> "rawrr"
dino_2.speak
=> "grrr"

The instance variable declared on class level can not be accessed on object level:

dino_1.try_to_speak
=> nil

However, we used the instance variable @base_sound to instantiate the sound when no sound is passed to the new

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 17

method:

dino_1.speak
=> "rawwr"

Instance variables can be declared anywhere in the object, even inside a block:

dino_1.count_and_store_sound_length
"r: 1"
"a: 2"
"w: 3"
"r: 4"
"r: 5"
=> ["r", "a", "w", "r", "r"]

dino_1.sound_length
=> 5

Instance variables are not shared between instances of the same class

dino_2.sound_length
=> nil

This can be used to create class level variables, that will not be overwritten by a child-class, since classes are also
objects in Ruby.

class DuckDuckDinosaur < Dinosaur
 @base_sound = "quack quack"
end

duck_dino = DuckDuckDinosaur.new
duck_dino.speak
=> "quack quack"
DuckDuckDinosaur.base_sound
=> "quack quack"
Dinosaur.base_sound
=> "rawrr"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 18

Chapter 5: Environment Variables
Section 5.1: Sample to get user profile path
will retrieve my home path
ENV['HOME'] # => "/Users/username"

will try retrieve the 'FOO' environment variable. If failed, will get 'bar'
ENV.fetch('FOO', 'bar')

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 19

Chapter 6: Constants
Section 6.1: Define a constant
MY_CONSTANT = "Hello, world" # constant
Constant = 'This is also constant' # constant
my_variable = "Hello, venus" # not constatn

Constant name start with capital letter. Everything that start with capital letter are considered as constant in Ruby.
So class and module are also constant. Best practice is use all capital letter for declaring constant.

Section 6.2: Modify a Constant
MY_CONSTANT = "Hello, world"
MY_CONSTANT = "Hullo, world"

The above code results in a warning, because you should be using variables if you want to change their values.
However it is possible to change one letter at a time in a constant without a warning, like this:

MY_CONSTANT = "Hello, world"
MY_CONSTANT[1] = "u"

Now, after changing the second letter of MY_CONSTANT, it becomes "Hullo, world".

Section 6.3: Constants cannot be defined in methods
def say_hi
 MESSAGE = "Hello"
 puts MESSAGE
end

The above code results in an error: SyntaxError: (irb):2: dynamic constant assignment.

Section 6.4: Define and change constants in a class
class Message
 DEFAULT_MESSAGE = "Hello, world"

 def speak(message = nil)
 if message
 puts message
 else
 puts DEFAULT_MESSAGE
 end
 end
end

The constant DEFAULT_MESSAGE can be changed with the following code:

Message::DEFAULT_MESSAGE = "Hullo, world"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 20

Chapter 7: Special Constants in Ruby
Section 7.1: __FILE__
Is the relative path to the file from the current execution directory
Assume we have this directory structure: /home/stackoverflow/script.rb
script.rb contains:

puts __FILE__

If you are inside /home/stackoverflow and execute the script like ruby script.rb then __FILE__ will output
script.rb If you are inside /home then it will output stackoverflow/script.rb

Very useful to get the path of the script in versions prior to 2.0 where __dir__ doesn't exist.

Note __FILE__ is not equal to __dir__

Section 7.2: __dir__
__dir__ is not a constant but a function
__dir__ is equal to File.dirname(File.realpath(__FILE__))

Section 7.3: $PROGRAM_NAME or $0
Contains the name of the script being executed.
Is the same as __FILE__ if you are executing that script.

Section 7.4: $$
The process number of the Ruby running this script

Section 7.5: $1, $2, etc
Contains the subpattern from the corresponding set of parentheses in the last successful pattern matched, not
counting patterns matched in nested blocks that have been exited already, or nil if the last pattern match failed.
These variables are all read-only.

Section 7.6: ARGV or $*
Command line arguments given for the script. The options for Ruby interpreter are already removed.

Section 7.7: STDIN
The standard input. The default value for $stdin

Section 7.8: STDOUT
The standard output. The default value for $stdout

Section 7.9: STDERR
The standard error output. The default value for $stderr

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 21

Section 7.10: $stderr
The current standard error output.

Section 7.11: $stdout
The current standard output

Section 7.12: $stdin
The current standard input

Section 7.13: ENV
The hash-like object contains current environment variables. Setting a value in ENV changes the environment for
child processes.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 22

Chapter 8: Comments
Section 8.1: Single & Multiple line comments
Comments are programmer-readable annotations that are ignored at runtime. Their purpose is to make source
code easier to understand.

Single line comments

The # character is used to add single line comments.

#!/usr/bin/ruby -w
This is a single line comment.
puts "Hello World!"

When executed, the above program will output Hello World!

Multiline comments

Multiple-line comments can be added by using =begin and =end syntax (also known as the comment block markers)
as follows:

#!/usr/bin/ruby -w
=begin
This is a multiline comment.
Write as many line as you want.
=end
puts "Hello World!"

When executed, the above program will output Hello World!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 23

Chapter 9: Arrays
Section 9.1: Create Array of Strings
Arrays of strings can be created using ruby's percent string syntax:

array = %w(one two three four)

This is functionally equivalent to defining the array as:

array = ['one', 'two', 'three', 'four']

Instead of %w() you may use other matching pairs of delimiters: %w{...}, %w[...] or %w<...>.

It is also possible to use arbitrary non-alphanumeric delimiters, such as: %w!...!, %w#...# or %w@...@.

%W can be used instead of %w to incorporate string interpolation. Consider the following:

var = 'hello'

%w(#{var}) # => ["\#{var}"]
%W(#{var}) # => ["hello"]

Multiple words can be interpreted by escaping the space with a \.

%w(Colorado California New\ York) # => ["Colorado", "California", "New York"]

Section 9.2: Create Array with Array::new
An empty Array ([]) can be created with Array's class method, Array::new:

Array.new

To set the length of the array, pass a numerical argument:

Array.new 3 #=> [nil, nil, nil]

There are two ways to populate an array with default values:

Pass an immutable value as second argument.
Pass a block that gets current index and generates mutable values.

Array.new 3, :x #=> [:x, :x, :x]

Array.new(3) { |i| i.to_s } #=> ["0", "1", "2"]

a = Array.new 3, "X" # Not recommended.
a[1].replace "C" # a => ["C", "C", "C"]

b = Array.new(3) { "X" } # The recommended way.
b[1].replace "C" # b => ["X", "C", "X"]

http://ruby-doc.org/core/doc/syntax/literals_rdoc.html#label-Percent+Strings
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 24

Section 9.3: Create Array of Symbols
Version ≥ 2.0

array = %i(one two three four)

Creates the array [:one, :two, :three, :four].

Instead of %i(...), you may use %i{...} or %i[...] or %i!...!

Additionally, if you want to use interpolation, you can do this with %I.

Version ≥ 2.0

a = 'hello'
b = 'goodbye'
array_one = %I(#{a} #{b} world)
array_two = %i(#{a} #{b} world)

Creates the arrays: array_one = [:hello, :goodbye, :world] and array_two = [:"\#{a}", :"\#{b}", :world]

Section 9.4: Manipulating Array Elements
Adding elements:

[1, 2, 3] << 4
=> [1, 2, 3, 4]

[1, 2, 3].push(4)
=> [1, 2, 3, 4]

[1, 2, 3].unshift(4)
=> [4, 1, 2, 3]

[1, 2, 3] << [4, 5]
=> [1, 2, 3, [4, 5]]

Removing elements:

array = [1, 2, 3, 4]
array.pop
=> 4
array
=> [1, 2, 3]

array = [1, 2, 3, 4]
array.shift
=> 1
array
=> [2, 3, 4]

array = [1, 2, 3, 4]
array.delete(1)
=> 1
array
=> [2, 3, 4]

array = [1,2,3,4,5,6]
array.delete_at(2) // delete from index 2
=> 3
array

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 25

=> [1,2,4,5,6]

array = [1, 2, 2, 2, 3]
array - [2]
=> [1, 3] # removed all the 2s
array - [2, 3, 4]
=> [1] # the 4 did nothing

Combining arrays:

[1, 2, 3] + [4, 5, 6]
=> [1, 2, 3, 4, 5, 6]

[1, 2, 3].concat([4, 5, 6])
=> [1, 2, 3, 4, 5, 6]

[1, 2, 3, 4, 5, 6] - [2, 3]
=> [1, 4, 5, 6]

[1, 2, 3] | [2, 3, 4]
=> [1, 2, 3, 4]

[1, 2, 3] & [3, 4]
=> [3]

You can also multiply arrays, e.g.

[1, 2, 3] * 2
=> [1, 2, 3, 1, 2, 3]

Section 9.5: Accessing elements
You can access the elements of an array by their indices. Array index numbering starts at 0.

%w(a b c)[0] # => 'a'
%w(a b c)[1] # => 'b'

You can crop an array using range

%w(a b c d)[1..2] # => ['b', 'c'] (indices from 1 to 2, including the 2)
%w(a b c d)[1...2] # => ['b'] (indices from 1 to 2, excluding the 2)

This returns a new array, but doesn't affect the original. Ruby also supports the use of negative indices.

%w(a b c)[-1] # => 'c'
%w(a b c)[-2] # => 'b'

You can combine negative and positive indices as well

%w(a b c d e)[1...-1] # => ['b', 'c', 'd']

Other useful methods

Use first to access the first element in an array:

[1, 2, 3, 4].first # => 1

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 26

Or first(n) to access the first n elements returned in an array:

[1, 2, 3, 4].first(2) # => [1, 2]

Similarly for last and last(n):

[1, 2, 3, 4].last # => 4
[1, 2, 3, 4].last(2) # => [3, 4]

Use sample to access a random element in a array:

[1, 2, 3, 4].sample # => 3
[1, 2, 3, 4].sample # => 1

Or sample(n):

[1, 2, 3, 4].sample(2) # => [2, 1]
[1, 2, 3, 4].sample(2) # => [3, 4]

Section 9.6: Creating an Array with the literal constructor []
Arrays can be created by enclosing a list of elements in square brackets ([and]). Array elements in this notation
are separated with commas:

array = [1, 2, 3, 4]

Arrays can contain any kind of objects in any combination with no restrictions on type:

array = [1, 'b', nil, [3, 4]]

Section 9.7: Decomposition
Any array can be quickly decomposed by assigning its elements into multiple variables. A simple example:

arr = [1, 2, 3]

a = arr[0]
b = arr[1]
c = arr[2]
--- or, the same
a, b, c = arr

Preceding a variable with the splat operator (*) puts into it an array of all the elements that haven't been captured
by other variables. If none are left, empty array is assigned. Only one splat can be used in a single assignment:

a, *b = arr # a = 1; b = [2, 3]
a, *b, c = arr # a = 1; b = [2]; c = 3
a, b, c, *d = arr # a = 1; b = 2; c = 3; d = []
a, *b, *c = arr # SyntaxError: unexpected *

Decomposition is safe and never raises errors. nils are assigned where there's not enough elements, matching the
behavior of [] operator when accessing an index out of bounds:

arr[9000] # => nil

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 27

a, b, c, d = arr # a = 1; b = 2; c = 3; d = nil

Decomposition tries to call to_ary implicitly on the object being assigned. By implementing this method in your
type you get the ability to decompose it:

class Foo
 def to_ary
 [1, 2]
 end
end
a, b = Foo.new # a = 1; b = 2

If the object being decomposed doesn't respond_to? to_ary, it's treated as a single-element array:

1.respond_to?(:to_ary) # => false
a, b = 1 # a = 1; b = nil

Decomposition can also be nested by using a ()-delimited decomposition expression in place of what otherwise
would be a single element:

arr = [1, [2, 3, 4], 5, 6]
a, (b, *c), *d = arr # a = 1; b = 2; c = [3, 4]; d = [5, 6]
^^^^^

This is effectively the opposite of splat.

Actually, any decomposition expression can be delimited by (). But for the first level decomposition is optional.

a, b = [1, 2]
(a, b) = [1, 2] # the same thing

Edge case: a single identifier cannot be used as a destructuring pattern, be it outer or a nested one:

(a) = [1] # SyntaxError
a, (b) = [1, [2]] # SyntaxError

When assigning an array literal to a destructuring expression, outer [] can be omitted:

a, b = [1, 2]
a, b = 1, 2 # exactly the same

This is known as parallel assignment, but it uses the same decomposition under the hood. This is particularly
handy for exchanging variables' values without employing additional temporary variables:

t = a; a = b; b = t # an obvious way
a, b = b, a # an idiomatic way
(a, b) = [b, a] # ...and how it works

Values are captured when building the right-hand side of the assignment, so using the same variables as source
and destination is relatively safe.

Section 9.8: Arrays union, intersection and dierence
x = [5, 5, 1, 3]
y = [5, 2, 4, 3]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 28

Union (|) contains elements from both arrays, with duplicates removed:

x | y
=> [5, 1, 3, 2, 4]

Intersection (&) contains elements which are present both in first and second array:

x & y
=> [5, 3]

Difference (-) contains elements which are present in first array and not present in second array:

x - y
=> [1]

Section 9.9: Remove all nil elements from an array with
#compact
If an array happens to have one or more nil elements and these need to be removed, the Array#compact or
Array#compact! methods can be used, as below.

array = [1, nil, 'hello', nil, '5', 33]

array.compact # => [1, 'hello', '5', 33]

#notice that the method returns a new copy of the array with nil removed,
#without affecting the original

array = [1, nil, 'hello', nil, '5', 33]

#If you need the original array modified, you can either reassign it

array = array.compact # => [1, 'hello', '5', 33]

array = [1, 'hello', '5', 33]

#Or you can use the much more elegant 'bang' version of the method

array = [1, nil, 'hello', nil, '5', 33]

array.compact # => [1, 'hello', '5', 33]

array = [1, 'hello', '5', 33]

Finally, notice that if #compact or #compact! are called on an array with no nil elements, these will return nil.

array = ['foo', 4, 'life']

array.compact # => nil

array.compact! # => nil

Section 9.10: Get all combinations / permutations of an array
The permutation method, when called with a block yields a two dimensional array consisting of all ordered
sequences of a collection of numbers.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 29

If this method is called without a block, it will return an enumerator. To convert to an array, call the to_a method.

Example Result
[1,2,3].permutation #<Enumerator: [1,2,3]:permutation

[1,2,3].permutation.to_a [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

[1,2,3].permutation(2).to_a [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]

[1,2,3].permutation(4).to_a [] -> No permutations of length 4

The combination method on the other hand, when called with a block yields a two-dimensional array consisting of
all sequences of a collection of numbers. Unlike permutation, order is disregarded in combinations. For example,
[1,2,3] is the same as [3,2,1]

Example Result
[1,2,3].combination(1) #<Enumerator: [1,2,3]:combination

[1,2,3].combination(1).to_a [[1],[2],[3]]

[1,2,3].combination(3).to_a [[1,2,3]]

[1,2,3].combination(4).to_a [] -> No combinations of length 4

Calling the combination method by itself will result in an enumerator. To get an array, call the to_a method.

The repeated_combination and repeated_permutation methods are similar, except the same element can be
repeated multiple times.

For example the sequences [1,1], [1,3,3,1], [3,3,3] would not be valid in regular combinations and
permutations.

Example # Combos
[1,2,3].combination(3).to_a.length 1
[1,2,3].repeated_combination(3).to_a.length 6
[1,2,3,4,5].combination(5).to_a.length 1
[1,2,3].repeated_combination(5).to_a.length 126

Section 9.11: Inject, reduce
Inject and reduce are different names for the same thing. In other languages these functions are often called folds
(like foldl or foldr). These methods are available on every Enumerable object.

Inject takes a two argument function and applies that to all of the pairs of elements in the Array.

For the array [1, 2, 3] we can add all of these together with the starting value of zero by specifying a starting
value and block like so:

[1,2,3].reduce(0) {|a,b| a + b} # => 6

Here we pass the function a starting value and a block that says to add all of the values together. The block is first
run with 0 as a and 1 as b it then takes the result of that as the next a so we are then adding 1 to the second value 2.
Then we take the result of that (3) and add that on to the final element in the list (also 3) giving us our result (6).

If we omit the first argument, it will set a to being the first element in the list, so the example above is the same as:

[1,2,3].reduce {|a,b| a + b} # => 6

In addition, instead of passing a block with a function, we can pass a named function as a symbol, either with a

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 30

starting value, or without. With this, the above example could be written as:

[1,2,3].reduce(0, :+) # => 6

or omitting the starting value:

[1,2,3].reduce(:+) # => 6

Section 9.12: Filtering arrays
Often we want to operate only on elements of an array that fulfill a specific condition:

Select

Will return elements that match a specific condition

array = [1, 2, 3, 4, 5, 6]
array.select { |number| number > 3 } # => [4, 5, 6]

Reject

Will return elements that do not match a specific condition

array = [1, 2, 3, 4, 5, 6]
array.reject { |number| number > 3 } # => [1, 2, 3]

Both #select and #reject return an array, so they can be chained:

array = [1, 2, 3, 4, 5, 6]
array.select { |number| number > 3 }.reject { |number| number < 5 }
 # => [5, 6]

Section 9.13: #map
#map, provided by Enumerable, creates an array by invoking a block on each element and collecting the results:

[1, 2, 3].map { |i| i * 3 }
=> [3, 6, 9]

['1', '2', '3', '4', '5'].map { |i| i.to_i }
=> [1, 2, 3, 4, 5]

The original array is not modified; a new array is returned containing the transformed values in the same order as
the source values. map! can be used if you want to modify the original array.

In map method you can call method or use proc to all elements in array.

call to_i method on all elements
%w(1 2 3 4 5 6 7 8 9 10).map(&:to_i)
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

using proc (lambda) on all elements
%w(1 2 3 4 5 6 7 8 9 10).map(&->(i){ i.to_i * 2})
=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

http://www.rubydoc.info/stdlib/core/Array%3Aselect
http://www.rubydoc.info/stdlib/core/Array%3Areject
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 31

map is synonymous with collect.

Section 9.14: Arrays and the splat (*) operator
The * operator can be used to unpack variables and arrays so that they can be passed as individual arguments to a
method.

This can be used to wrap a single object in an Array if it is not already:

def wrap_in_array(value)
 [*value]
end

wrap_in_array(1)
#> [1]

wrap_in_array([1, 2, 3])
#> [1, 2, 3]

wrap_in_array(nil)
#> []

In the above example, the wrap_in_array method accepts one argument, value.

If value is an Array, its elements are unpacked and a new array is created containing those element.

If value is a single object, a new array is created containing that single object.

If value is nil, an empty array is returned.

The splat operator is particularly handy when used as an argument in methods in some cases. For example, it
allows nil, single values and arrays to be handled in a consistent manner:

def list(*values)
 values.each do |value|
 # do something with value
 puts value
 end
end

list(100)
#> 100

list([100, 200])
#> 100
#> 200

list(nil)
nothing is outputted

Section 9.15: Two-dimensional array
Using the Array::new constructor, your can initialize an array with a given size and a new array in each of its slots.
The inner arrays can also be given a size and and initial value.

For instance, to create a 3x4 array of zeros:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 32

array = Array.new(3) { Array.new(4) { 0 } }

The array generated above looks like this when printed with p:

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

You can read or write to elements like this:

x = array[0][1]
array[2][3] = 2

Section 9.16: Turn multi-dimensional array into a one-
dimensional (flattened) array
[1, 2, [[3, 4], [5]], 6].flatten # => [1, 2, 3, 4, 5, 6]

If you have a multi-dimensional array and you need to make it a simple (i.e. one-dimensional) array, you can use the
#flatten method.

Section 9.17: Get unique array elements
In case you need to read an array elements avoiding repetitions you case use the #uniq method:

a = [1, 1, 2, 3, 4, 4, 5]
a.uniq
#=> [1, 2, 3, 4, 5]

Instead, if you want to remove all duplicated elements from an array, you may use #uniq! method:

a = [1, 1, 2, 3, 4, 4, 5]
a.uniq!
#=> [1, 2, 3, 4, 5]

While the output is the same, #uniq! also stores the new array:

a = [1, 1, 2, 3, 4, 4, 5]
a.uniq
#=> [1, 2, 3, 4, 5]
a
#=> [1, 1, 2, 3, 4, 4, 5]

a = [1, 1, 2, 3, 4, 4, 5]
a.uniq!
#=> [1, 2, 3, 4, 5]
a
#=> [1, 2, 3, 4, 5]

Section 9.18: Create Array of numbers
The normal way to create an array of numbers:

numbers = [1, 2, 3, 4, 5]

Range objects can be used extensively to create an array of numbers:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 33

numbers = Array(1..10) # => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

numbers = (1..10).to_a # => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

#step and #map methods allow us to impose conditions on the range of numbers:

odd_numbers = (1..10).step(2).to_a # => [1, 3, 5, 7, 9]

even_numbers = 2.step(10, 2).to_a # => [2, 4, 6, 8, 10]

squared_numbers = (1..10).map { |number| number * number } # => [1, 4, 9, 16, 25, 36, 49, 64, 81,
100]

All the above methods load the numbers eagerly. If you have to load them lazily:

number_generator = (1..100).lazy # => #<Enumerator::Lazy: 1..100>

number_generator.first(10) # => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Section 9.19: Create an Array of consecutive numbers or
letters
This can be easily accomplished by calling Enumerable#to_a on a Range object:

(1..10).to_a #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

(a..b) means that it will include all numbers between a and b. To exclude the last number, use a...b

a_range = 1...5
a_range.to_a #=> [1, 2, 3, 4]

or

('a'..'f').to_a #=> ["a", "b", "c", "d", "e", "f"]
('a'...'f').to_a #=> ["a", "b", "c", "d", "e"]

A convenient shortcut for creating an array is [*a..b]

[*1..10] #=> [1,2,3,4,5,6,7,8,9,10]
[*'a'..'f'] #=> ["a", "b", "c", "d", "e", "f"]

Section 9.20: Cast to Array from any object
To get Array from any object, use Kernel#Array.

The following is an example:

Array('something') #=> ["something"]
Array([2, 1, 5]) #=> [2, 1, 5]
Array(1) #=> [1]
Array(2..4) #=> [2, 3, 4]
Array([]) #=> []
Array(nil) #=> []

For example, you could replace join_as_string method from the following code

http://ruby-doc.org/core-2.3.1/Enumerable.html#method-i-to_a
http://ruby-doc.org/core-2.3.1/Enumerable.html#method-i-to_a
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 34

def join_as_string(arg)
 if arg.instance_of?(Array)
 arg.join(',')
 elsif arg.instance_of?(Range)
 arg.to_a.join(',')
 else
 arg.to_s
 end
end

join_as_string('something') #=> "something"
join_as_string([2, 1, 5]) #=> "2,1,5"
join_as_string(1) #=> "1"
join_as_string(2..4) #=> "2,3,4"
join_as_string([]) #=> ""
join_as_string(nil) #=> ""

to the following code.

def join_as_string(arg)
 Array(arg).join(',')
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 35

Chapter 10: Multidimensional Arrays
Multidimensional Arrays in Ruby are just arrays whose elements are other arrays.

The only catch is that since Ruby arrays can contain elements of mixed types, you must be confident that the array
that you are manipulating is effectively composed of other arrays and not, for example, arrays and strings.

Section 10.1: Initializing a 2D array
Let's first recap how to initialize a 1D ruby array of integers:

my_array = [1, 1, 2, 3, 5, 8, 13]

Being a 2D array simply an array of arrays, you can initialize it like this:

my_array = [
 [1, 1, 2, 3, 5, 8, 13],
 [1, 4, 9, 16, 25, 36, 49, 64, 81],
 [2, 3, 5, 7, 11, 13, 17]
]

Section 10.2: Initializing a 3D array
You can go a level further down and add a third layer of arrays. The rules don't change:

my_array = [
 [
 [1, 1, 2, 3, 5, 8, 13],
 [1, 4, 9, 16, 25, 36, 49, 64, 81],
 [2, 3, 5, 7, 11, 13, 17]
],
 [
 ['a', 'b', 'c', 'd', 'e'],
 ['z', 'y', 'x', 'w', 'v']
],
 [
 []
]
]

Section 10.3: Accessing a nested array
Accessing the 3rd element of the first subarray:

my_array[1][2]

Section 10.4: Array flattening
Given a multidimensional array:

my_array = [[1, 2], ['a', 'b']]

the operation of flattening is to decompose all array children into the root array:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 36

my_array.flatten

[1, 2, 'a', 'b']

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 37

Chapter 11: Strings
Section 11.1: Dierence between single-quoted and double-
quoted String literals
The main difference is that double-quoted String literals support string interpolations and the full set of escape
sequences.

For instance, they can include arbitrary Ruby expressions via interpolation:

Single-quoted strings don't support interpolation
puts 'Now is #{Time.now}'
Now is #{Time.now}

Double-quoted strings support interpolation
puts "Now is #{Time.now}"
Now is 2016-07-21 12:43:04 +0200

Double-quoted strings also support the entire set of escape sequences including "\n", "\t"...

puts 'Hello\nWorld'
Hello\nWorld

puts "Hello\nWorld"
Hello
World

... while single-quoted strings support no escape sequences, baring the minimal set necessary for single-quoted
strings to be useful: Literal single quotes and backslashes, '\'' and '\\' respectively.

Section 11.2: Creating a String
Ruby provides several ways to create a String object. The most common way is using single or double quotes to
create a "string literal":

s1 = 'Hello'
s2 = "Hello"

The main difference is that double-quoted string literals are a little bit more flexible as they support interpolation
and some backslash escape sequences.

There are also several other possible ways to create a string literal using arbitrary string delimiters. An arbitrary
string delimiter is a % followed by a matching pair of delimiters:

%(A string)
%{A string}
%<A string>
%|A string|
%!A string!

Finally, you can use the %q and %Q sequence, that are equivalent to ' and "":

puts %q(A string)
A string
puts %q(Now is #{Time.now})

https://github.com/ruby/ruby/blob/trunk/doc/syntax/literals.rdoc#strings
http://ruby-doc.org/core/String.html
http://ruby-doc.org/core/doc/syntax/literals_rdoc.html#label-Strings
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 38

Now is #{Time.now}

puts %Q(A string)
A string
puts %Q(Now is #{Time.now})
Now is 2016-07-21 12:47:45 +0200

%q and %Q sequences are useful when the string contains either single quotes, double quotes, or a mix of both. In
this way, you don't need to escape the content:

%Q(User's profile<a>)

You can use several different delimiters, as long as there is a matching pair:

%q(A string)
%q{A string}
%q<A string>
%q|A string|
%q!A string!

Section 11.3: Case manipulation
"string".upcase # => "STRING"
"STRING".downcase # => "string"
"String".swapcase # => "sTRING"
"string".capitalize # => "String"

These four methods do not modify the original receiver. For example,

str = "Hello"
str.upcase # => "HELLO"
puts str # => "Hello"

There are four similar methods that perform the same actions but modify original receiver.

"string".upcase! # => "STRING"
"STRING".downcase! # => "string"
"String".swapcase! # => "sTRING"
"string".capitalize! # => "String"

For example,

str = "Hello"
str.upcase! # => "HELLO"
puts str # => "HELLO"

Notes:

prior to Ruby 2.4 these methods do not handle unicode.

Section 11.4: String concatenation
Concatenate strings with the + operator:

s1 = "Hello"
s2 = " "

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 39

s3 = "World"

puts s1 + s2 + s3
=> Hello World

s = s1 + s2 + s3
puts s
=> Hello World

Or with the << operator:

s = 'Hello'
s << ' '
s << 'World'
puts s
=> Hello World

Note that the << operator modifies the object on the left hand side.

You also can multiply strings, e.g.

"wow" * 3
=> "wowwowwow"

Section 11.5: Positioning strings
In Ruby, strings can be left-justified, right-justified or centered

To left-justify string, use the ljust method. This takes in two parameters, an integer representing the number of
characters of the new string and a string, representing the pattern to be filled.

If the integer is greater than the length of the original string, the new string will be left-justified with the optional
string parameter taking the remaining space. If the string parameter is not given, the string will be padded with
spaces.

str ="abcd"
str.ljust(4) => "abcd"
str.ljust(10) => "abcd "

To right-justify a string, use the rjust method. This takes in two parameters, an integer representing the number of
characters of the new string and a string, representing the pattern to be filled.

If the integer is greater than the length of the original string, the new string will be right-justified with the optional
string parameter taking the remaining space. If the string parameter is not given, the string will be padded with
spaces.

str = "abcd"
str.rjust(4) => "abcd"
str.rjust(10) => " abcd"

To center a string, use the center method. This takes in two parameters, an integer representing the width of the
new string and a string, which the original string will be padded with. The string will be aligned to the center.

str = "abcd"
str.center(4) => "abcd"
str.center(10) => " abcd "

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 40

Section 11.6: Splitting a String
String#split splits a String into an Array, based on a delimiter.

"alpha,beta".split(",")
=> ["alpha", "beta"]

An empty String results into an empty Array:

"".split(",")
=> []

A non-matching delimiter results in an Array containing a single item:

"alpha,beta".split(".")
=> ["alpha,beta"]

You can also split a string using regular expressions:

"alpha, beta,gamma".split(/, ?/)
=> ["alpha", "beta", "gamma"]

The delimiter is optional, by default a string is split on whitespace:

"alpha beta".split
=> ["alpha", "beta"]

Section 11.7: String starts with
To find if a string starts with a pattern, the start_with? method comes in handy

str = "zebras are cool"
str.start_with?("zebras") => true

You can also check the position of the pattern with index

str = "zebras are cool"
str.index("zebras").zero? => true

Section 11.8: Joining Strings
Array#join joins an Array into a String, based on a delimiter:

["alpha", "beta"].join(",")
=> "alpha,beta"

The delimiter is optional, and defaults to an empty String.

["alpha", "beta"].join
=> "alphabeta"

An empty Array results in an empty String, no matter which delimiter is used.

[].join(",")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 41

=> ""

Section 11.9: String interpolation
The double-quoted delimiter " and %Q sequence supports string interpolation using #{ruby_expression}:

puts "Now is #{Time.now}"
Now is Now is 2016-07-21 12:47:45 +0200

puts %Q(Now is #{Time.now})
Now is Now is 2016-07-21 12:47:45 +0200

Section 11.10: String ends with
To find if a string ends with a pattern, the end_with? method comes in handy

str = "I like pineapples"
str.end_with?("pineaaples") => false

Section 11.11: Formatted strings
Ruby can inject an array of values into a string by replacing any placeholders with the values from the supplied
array.

"Hello %s, my name is %s!" % ['World', 'br3nt']
=> Hello World, my name is br3nt!

The place holders are represented by two %s and the values are supplied by the array ['Hello', 'br3nt']. The %
operator instructs the string to inject the values of the array.

Section 11.12: String Substitution
p "This is %s" % "foo"
=> "This is foo"

p "%s %s %s" % ["foo", "bar", "baz"]
=> "foo bar baz"

p "%{foo} == %{foo}" % {:foo => "foo" }
=> "foo == foo"

See String % docs and Kernel::sprintf for more details.

Section 11.13: Multiline strings
The easiest way to create a multiline string is to just use multiple lines between quotation marks:

address = "Four score and seven years ago our fathers brought forth on this
continent, a new nation, conceived in Liberty, and dedicated to the
proposition that all men are created equal."

The main problem with that technique is that if the string includes a quotation, it'll break the string syntax. To work
around the problem, you can use a heredoc instead:

http://ruby-doc.org/core-2.3.0/String.html#method-i-25
http://ruby-doc.org/core-2.3.0/String.html#method-i-25
http://ruby-doc.org/core-2.3.1/Kernel.html#method-i-sprintf
https://ruby-doc.org/core-2.3.0/doc/syntax/literals_rdoc.html#label-Here+Documents
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 42

puts <<-RAVEN
 Once upon a midnight dreary, while I pondered, weak and weary,
 Over many a quaint and curious volume of forgotten lore—
 While I nodded, nearly napping, suddenly there came a tapping,
 As of some one gently rapping, rapping at my chamber door.
 "'Tis some visitor," I muttered, "tapping at my chamber door—
 Only this and nothing more."
 RAVEN

Ruby supports shell-style here documents with <<EOT, but the terminating text must start the line. That screws up
code indentation, so there's not a lot of reason to use that style. Unfortunately, the string will have indentations
depending no how the code itself is indented.

Ruby 2.3 solves the problem by introducing <<~ which strips out excess leading spaces:

Version ≥ 2.3

def build_email(address)
 return (<<~EMAIL)
 TO: #{address}

 To Whom It May Concern:

 Please stop playing the bagpipes at sunrise!

 Regards,
 Your neighbor
 EMAIL
end

Percent Strings also work to create multiline strings:

%q(
HAMLET Do you see yonder cloud that's almost in shape of a camel?
POLONIUS By the mass, and 'tis like a camel, indeed.
HAMLET Methinks it is like a weasel.
POLONIUS It is backed like a weasel.
HAMLET Or like a whale?
POLONIUS Very like a whale
)

There are a few ways to avoid interpolation and escape sequences:

Single quote instead of double quote: '\n is a carriage return.'

Lower case q in a percent string: %q[#{not-a-variable}]

Single quote the terminal string in a heredoc:

<<-'CODE'
 puts 'Hello world!'
CODE

Section 11.14: String character replacements
The tr method returns a copy of a string where the characters of the first argument are replaced by the characters
of the second argument.

https://ruby-doc.org/core-2.3.0/doc/syntax/literals_rdoc.html#label-Percent+Strings
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 43

"string".tr('r', 'l') # => "stling"

To replace only the first occurrence of a pattern with with another expression use the sub method

"string ring".sub('r', 'l') # => "stling ring"

If you would like to replace all occurrences of a pattern with that expression use gsub

"string ring".gsub('r','l') # => "stling ling"

To delete characters, pass in an empty string for the second parameter

You can also use regular expressions in all these methods.

It's important to note that these methods will only return a new copy of a string and won't modify the string in
place. To do that, you need to use the tr!, sub! and gsub! methods respectively.

Section 11.15: Understanding the data in a string
In Ruby, a string is just a sequence of bytes along with the name of an encoding (such as UTF-8, US-ASCII,
ASCII-8BIT) that specifies how you might interpret those bytes as characters.

Ruby strings can be used to hold text (basically a sequence of characters), in which case the UTF-8 encoding is
usually used.

"abc".bytes # => [97, 98, 99]
"abc".encoding.name # => "UTF-8"

Ruby strings can also be used to hold binary data (a sequence of bytes), in which case the ASCII-8BIT encoding is
usually used.

[42].pack("i").encoding # => "ASCII-8BIT"

It is possible for the sequence of bytes in a string to not match the encoding, resulting in errors if you try to use the
string.

"\xFF \xFF".valid_encoding? # => false
"\xFF \xFF".split(' ') # ArgumentError: invalid byte sequence in UTF-8

https://en.wikipedia.org/wiki/Byte
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 44

Chapter 12: DateTime
Section 12.1: DateTime from string
DateTime.parse is a very useful method which construct a DateTime from a string, guessing its format.

DateTime.parse('Jun, 8 2016')
=> #<DateTime: 2016-06-08T00:00:00+00:00 ((2457548j,0s,0n),+0s,2299161j)>
DateTime.parse('201603082330')
=> #<DateTime: 2016-03-08T23:30:00+00:00 ((2457456j,84600s,0n),+0s,2299161j)>
DateTime.parse('04-11-2016 03:50')
=> #<DateTime: 2016-11-04T03:50:00+00:00 ((2457697j,13800s,0n),+0s,2299161j)>
DateTime.parse('04-11-2016 03:50 -0300')
=> #<DateTime: 2016-11-04T03:50:00-03:00 ((2457697j,24600s,0n),-10800s,2299161j)

Note: There are lots of other formats that parse recognizes.

Section 12.2: New
DateTime.new(2014,10,14)
=> #<DateTime: 2014-10-14T00:00:00+00:00 ((2456945j,0s,0n),+0s,2299161j)>

Current time:

DateTime.now
=> #<DateTime: 2016-08-04T00:43:58-03:00 ((2457605j,13438s,667386397n),-10800s,2299161j)>

Note that it gives the current time in your timezone

Section 12.3: Add/subtract days to DateTime
DateTime + Fixnum (days quantity)

DateTime.new(2015,12,30,23,0) + 1
=> #<DateTime: 2015-12-31T23:00:00+00:00 ((2457388j,82800s,0n),+0s,2299161j)>

DateTime + Float (days quantity)

DateTime.new(2015,12,30,23,0) + 2.5
=> #<DateTime: 2016-01-02T11:00:00+00:00 ((2457390j,39600s,0n),+0s,2299161j)>

DateTime + Rational (days quantity)

DateTime.new(2015,12,30,23,0) + Rational(1,2)
=> #<DateTime: 2015-12-31T11:00:00+00:00 ((2457388j,39600s,0n),+0s,2299161j)>

DateTime - Fixnum (days quantity)

DateTime.new(2015,12,30,23,0) - 1
=> #<DateTime: 2015-12-29T23:00:00+00:00 ((2457388j,82800s,0n),+0s,2299161j)>

DateTime - Float (days quantity)

DateTime.new(2015,12,30,23,0) - 2.5

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 45

=> #<DateTime: 2015-12-28T11:00:00+00:00 ((2457385j,39600s,0n),+0s,2299161j)>

DateTime - Rational (days quantity)

DateTime.new(2015,12,30,23,0) - Rational(1,2)
=> #<DateTime: 2015-12-30T11:00:00+00:00 ((2457387j,39600s,0n),+0s,2299161j)>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 46

Chapter 13: Time
Section 13.1: How to use the strftime method
Converting a time to a string is a pretty common thing to do in Ruby. strftime is the method one would use to
convert time to a string.

Here are some examples:

Time.now.strftime("%Y-%m-d %H:%M:S") #=> "2016-07-27 08:45:42"

This can be simplified even further

Time.now.strftime("%F %X") #=> "2016-07-27 08:45:42"

Section 13.2: Creating time objects
Get current time:

Time.now
Time.new # is equivalent if used with no parameters

Get specific time:

Time.new(2010, 3, 10) #10 March 2010 (Midnight)
Time.new(2015, 5, 3, 10, 14) #10:14 AM on 3 May 2015
Time.new(2050, "May", 3, 21, 8, 16, "+10:00") #09:08:16 PM on 3 May 2050

To convert a time to epoch you can use the to_i method:

Time.now.to_i # => 1478633386

You can also convert back from epoch to Time using the at method:

Time.at(1478633386) # => 2016-11-08 17:29:46 -0200

https://en.wikipedia.org/wiki/Unix_time
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 47

Chapter 14: Numbers
Section 14.1: Converting a String to Integer
You can use the Integer method to convert a String to an Integer:

Integer("123") # => 123
Integer("0xFF") # => 255
Integer("0b100") # => 4
Integer("0555") # => 365

You can also pass a base parameter to the Integer method to convert numbers from a certain base

Integer('10', 5) # => 5
Integer('74', 8) # => 60
Integer('NUM', 36) # => 30910

Note that the method raises an ArgumentError if the parameter cannot be converted:

Integer("hello")
raises ArgumentError: invalid value for Integer(): "hello"
Integer("23-hello")
raises ArgumentError: invalid value for Integer(): "23-hello"

You can also use the String#to_i method. However, this method is slightly more permissive and has a different
behavior than Integer:

"23".to_i # => 23
"23-hello".to_i # => 23
"hello".to_i # => 0

String#to_i accepts an argument, the base to interpret the number as:

"10".to_i(2) # => 2
"10".to_i(3) # => 3
"A".to_i(16) # => 10

Section 14.2: Creating an Integer
0 # creates the Fixnum 0
123 # creates the Fixnum 123
1_000 # creates the Fixnum 1000. You can use _ as separator for readability

By default the notation is base 10. However, there are some other built-in notations for different bases:

0xFF # Hexadecimal representation of 255, starts with a 0x
0b100 # Binary representation of 4, starts with a 0b
0555 # Octal representation of 365, starts with a 0 and digits

Section 14.3: Rounding Numbers
The round method will round a number up if the first digit after its decimal place is 5 or higher and round down if
that digit is 4 or lower. This takes in an optional argument for the precision you're looking for.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 48

4.89.round # => 5
4.25.round # => 4
3.141526.round(1) # => 3.1
3.141526.round(2) # => 3.14
3.141526.round(4) # => 3.1415

Floating point numbers can also be rounded down to the highest integer lower than the number with the floor
method

4.9999999999999.floor # => 4

They can also be rounded up to the lowest integer higher than the number using the ceil method

4.0000000000001.ceil # => 5

Section 14.4: Even and Odd Numbers
The even? method can be used to determine if a number is even

4.even? # => true
5.even? # => false

The odd? method can be used to determine if a number is odd

4.odd? # => false
5.odd? # => true

Section 14.5: Rational Numbers
Rational represents a rational number as numerator and denominator:

r1 = Rational(2, 3)
r2 = 2.5.to_r
r3 = r1 + r2
r3.numerator # => 19
r3.denominator # => 6
Rational(2, 4) # => (1/2)

Other ways of creating a Rational

Rational('2/3') # => (2/3)
Rational(3) # => (3/1)
Rational(3, -5) # => (-3/5)
Rational(0.2) # => (3602879701896397/18014398509481984)
Rational('0.2') # => (1/5)
0.2.to_r # => (3602879701896397/18014398509481984)
0.2.rationalize # => (1/5)
'1/4'.to_r # => (1/4)

Section 14.6: Complex Numbers
1i # => (0+1i)
1.to_c # => (1+0i)
rectangular = Complex(2, 3) # => (2+3i)
polar = Complex('1@2') # => (-0.4161468365471424+0.9092974268256817i)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 49

polar.rectangular # => [-0.4161468365471424, 0.9092974268256817]
rectangular.polar # => [3.605551275463989, 0.982793723247329]
rectangular + polar # => (1.5838531634528576+3.909297426825682i)

Section 14.7: Converting a number to a string
Fixnum#to_s takes an optional base argument and represents the given number in that base:

2.to_s(2) # => "10"
3.to_s(2) # => "11"
3.to_s(3) # => "10"
10.to_s(16) # => "a"

If no argument is provided, then it represents the number in base 10

2.to_s # => "2"
10423.to_s # => "10423"

Section 14.8: Dividing two numbers
When dividing two numbers pay attention to the type you want in return. Note that dividing two integers will
invoke the integer division. If your goal is to run the float division, at least one of the parameters should be of
float type.

Integer division:

3 / 2 # => 1

Float division

3 / 3.0 # => 1.0

16 / 2 / 2 # => 4
16 / 2 / 2.0 # => 4.0
16 / 2.0 / 2 # => 4.0
16.0 / 2 / 2 # => 4.0

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 50

Chapter 15: Symbols
Section 15.1: Creating a Symbol
The most common way to create a Symbol object is by prefixing the string identifier with a colon:

:a_symbol # => :a_symbol
:a_symbol.class # => Symbol

Here are some alternative ways to define a Symbol, in combination with a String literal:

:"a_symbol"
"a_symbol".to_sym

Symbols also have a %s sequence that supports arbitrary delimiters similar to how %q and %Q work for strings:

%s(a_symbol)
%s{a_symbol}

The %s is particularly useful to create a symbol from an input that contains white space:

%s{a symbol} # => :"a symbol"

While some interesting symbols (:/, :[], :^, etc.) can be created with certain string identifiers, note that symbols
cannot be created using a numeric identifier:

:1 # => syntax error, unexpected tINTEGER, ...
:0.3 # => syntax error, unexpected tFLOAT, ...

Symbols may end with a single ? or ! without needing to use a string literal as the symbol's identifier:

:hello? # :"hello?" is not necessary.
:world! # :"world!" is not necessary.

Note that all of these different methods of creating symbols will return the same object:

:symbol.object_id == "symbol".to_sym.object_id
:symbol.object_id == %s{symbol}.object_id

Since Ruby 2.0 there is a shortcut for creating an array of symbols from words:

%i(numerator denominator) == [:numerator, :denominator]

Section 15.2: Converting a String to Symbol
Given a String:

s = "something"

there are several ways to convert it to a Symbol:

s.to_sym
=> :something

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 51

:"#{s}"
=> :something

Section 15.3: Converting a Symbol to String
Given a Symbol:

s = :something

The simplest way to convert it to a String is by using the Symbol#to_s method:

s.to_s
=> "something"

Another way to do it is by using the Symbol#id2name method which is an alias for the Symbol#to_s method. But it's a
method that is unique to the Symbol class:

s.id2name
=> "something"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 52

Chapter 16: Comparable
Parameter Details
other The instance to be compared to self

Section 16.1: Rectangle comparable by area
Comparable is one of the most popular modules in Ruby. Its purpose is to provide with convenience comparison
methods.

To use it, you have to include Comparable and define the space-ship operator (<=>):

class Rectangle
 include Comparable

 def initialize(a, b)
 @a = a
 @b = b
 end

 def area
 @a * @b
 end

 def <=>(other)
 area <=> other.area
 end
end

r1 = Rectangle.new(1, 1)
r2 = Rectangle.new(2, 2)
r3 = Rectangle.new(3, 3)

r2 >= r1 # => true
r2.between? r1, r3 # => true
r3.between? r1, r2 # => false

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 53

Chapter 17: Control Flow
Section 17.1: if, elsif, else and end
Ruby offers the expected if and else expressions for branching logic, terminated by the end keyword:

Simulate flipping a coin
result = [:heads, :tails].sample

if result == :heads
 puts 'The coin-toss came up "heads"'
else
 puts 'The coin-toss came up "tails"'
end

In Ruby, if statements are expressions that evaluate to a value, and the result can be assigned to a variable:

status = if age < 18
 :minor
 else
 :adult
 end

Ruby also offers C-style ternary operators (see here for details) that can be expressed as:

some_statement ? if_true : if_false

This means the above example using if-else can also be written as

status = age < 18 ? :minor : :adult

Additionally, Ruby offers the elsif keyword which accepts an expression to enables additional branching logic:

label = if shirt_size == :s
 'small'
 elsif shirt_size == :m
 'medium'
 elsif shirt_size == :l
 'large'
 else
 'unknown size'
 end

If none of the conditions in an if/elsif chain are true, and there is no else clause, then the expression evaluates
to nil. This can be useful inside string interpolation, since nil.to_s is the empty string:

"user#{'s' if @users.size != 1}"

Section 17.2: Case statement
Ruby uses the case keyword for switch statements.

As per the Ruby Docs:

http://ruby-doc.org/docs/keywords/1.9/Object.html#method-i-case
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 54

Case statements consist of an optional condition, which is in the position of an argument to case, and
zero or more when clauses. The first when clause to match the condition (or to evaluate to Boolean truth, if
the condition is null) “wins”, and its code stanza is executed. The value of the case statement is the value
of the successful when clause, or nil if there is no such clause.

A case statement can end with an else clause. Each when a statement can have multiple candidate values,
separated by commas.

Example:

case x
when 1,2,3
 puts "1, 2, or 3"
when 10
 puts "10"
else
 puts "Some other number"
end

Shorter version:

case x
when 1,2,3 then puts "1, 2, or 3"
when 10 then puts "10"
else puts "Some other number"
end

The value of the case clause is matched with each when clause using the === method (not ==). Therefore it can be
used with a variety of different types of objects.

A case statement can be used with Ranges:

case 17
when 13..19
 puts "teenager"
end

A case statement can be used with a Regexp:

case "google"
when /oo/
 puts "word contains oo"
end

A case statement can be used with a Proc or lambda:

case 44
when -> (n) { n.even? or n < 0 }
 puts "even or less than zero"
end

A case statement can be used with Classes:

case x
when Integer
 puts "It's an integer"

http://ruby-doc.org/core/Range.html
http://ruby-doc.org/core/Regexp.html
http://ruby-doc.org/core/Proc.html
http://ruby-doc.org/core/Class.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 55

when String
 puts "It's a string"
end

By implementing the === method you can create your own match classes:

class Empty
 def self.===(object)
 !object or "" == object
 end
end

case ""
when Empty
 puts "name was empty"
else
 puts "name is not empty"
end

A case statement can be used without a value to match against:

case
when ENV['A'] == 'Y'
 puts 'A'
when ENV['B'] == 'Y'
 puts 'B'
else
 puts 'Neither A nor B'
end

A case statement has a value, so you can use it as a method argument or in an assignment:

description = case 16
 when 13..19 then "teenager"
 else ""
 end

Section 17.3: Truthy and Falsy values
In Ruby, there are exactly two values which are considered "falsy", and will return false when tested as a condition
for an if expression. They are:

nil

boolean false

All other values are considered "truthy", including:

0 - numeric zero (Integer or otherwise)
"" - Empty strings
"\n" - Strings containing only whitespace
[] - Empty arrays
{} - Empty hashes

Take, for example, the following code:

def check_truthy(var_name, var)
 is_truthy = var ? "truthy" : "falsy"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 56

 puts "#{var_name} is #{is_truthy}"
end

check_truthy("false", false)
check_truthy("nil", nil)
check_truthy("0", 0)
check_truthy("empty string", "")
check_truthy("\\n", "\n")
check_truthy("empty array", [])
check_truthy("empty hash", {})

Will output:

false is falsy
nil is falsy
0 is truthy
empty string is truthy
\n is truthy
empty array is truthy
empty hash is truthy

Section 17.4: Inline if/unless
A common pattern is to use an inline, or trailing, if or unless:

puts "x is less than 5" if x < 5

This is known as a conditional modifier, and is a handy way of adding simple guard code and early returns:

def save_to_file(data, filename)
 raise "no filename given" if filename.empty?
 return false unless data.valid?

 File.write(filename, data)
end

It is not possible to add an else clause to these modifiers. Also it is generally not recommended to use conditional
modifiers inside the main logic -- For complex code one should use normal if, elsif, else instead.

Section 17.5: while, until
A while loop executes the block while the given condition is met:

i = 0
while i < 5
 puts "Iteration ##{i}"
 i +=1
end

An until loop executes the block while the conditional is false:

i = 0
until i == 5
 puts "Iteration ##{i}"
 i +=1
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 57

Section 17.6: Flip-Flop operator
The flip flop operator .. is used between two conditions in a conditional statement:

(1..5).select do |e|
 e if (e == 2) .. (e == 4)
end
=> [2, 3, 4]

The condition evaluates to false until the first part becomes true. Then it evaluates to true until the second part
becomes true. After that it switches to false again.

This example illustrates what is being selected:

[1, 2, 2, 3, 4, 4, 5].select do |e|
 e if (e == 2) .. (e == 4)
end
=> [2, 2, 3, 4]

The flip-flop operator only works inside ifs (including unless) and ternary operator. Otherwise it is being considered
as the range operator.

(1..5).select do |e|
 (e == 2) .. (e == 4)
end
=> ArgumentError: bad value for range

It can switch from false to true and backwards multiple times:

((1..5).to_a * 2).select do |e|
 e if (e == 2) .. (e == 4)
end
=> [2, 3, 4, 2, 3, 4]

Section 17.7: Or-Equals/Conditional assignment operator (||=)
Ruby has an or-equals operator that allows a value to be assigned to a variable if and only if that variable evaluates
to either nil or false.

 ||= # this is the operator that achieves this.

this operator with the double pipes representing or and the equals sign representing assigning of a value. You may
think it represents something like this:

 x = x || y

this above example is not correct. The or-equals operator actually represents this:

 x || x = y

If x evaluates to nil or false then x is assigned the value of y, and left unchanged otherwise.

Here is a practical use-case of the or-equals operator. Imagine you have a portion of your code that is expected to
send an email to a user. What do you do if for what ever reason there is no email for this user. You might write
something like this:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 58

 if user_email.nil?
 user_email = "error@yourapp.com"
 end

Using the or-equals operator we can cut this entire chunk of code, providing clean, clear control and functionality.

 user_email ||= "error@yourapp.com"

In cases where false is a valid value, care must be taken to not override it accidentally:

has_been_run = false
has_been_run ||= true
#=> true

has_been_run = false
has_been_run = true if has_been_run.nil?
#=> false

Section 17.8: unless
A common statement is if !(some condition). Ruby offers the alternative of the unless statement.

The structure is exactly the same as an if statement, except the condition is negative. Also, the unless statement
does not support elsif, but it does support else:

Prints not inclusive
unless 'hellow'.include?('all')
 puts 'not inclusive'
end

Section 17.9: throw, catch
Unlike many other programming languages, the throw and catch keywords are not related to exception handling in
Ruby.

In Ruby, throw and catch act a bit like labels in other languages. They are used to change the control flow, but are
not related to a concept of "error" like Exceptions are.

catch(:out) do
 catch(:nested) do
 puts "nested"
 end

 puts "before"
 throw :out
 puts "will not be executed"
end
puts "after"
prints "nested", "before", "after"

Section 17.10: Ternary operator
Ruby has a ternary operator (?:), which returns one of two value based on if a condition evaluates as truthy:

conditional ? value_if_truthy : value_if_falsy

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 59

value = true
value ? "true" : "false"
#=> "true"

value = false
value ? "true" : "false"
#=> "false"

it is the same as writing if a then b else c end, though the ternary is preferred

Examples:

puts (if 1 then 2 else 3 end) # => 2

puts 1 ? 2 : 3 # => 2

x = if 1 then 2 else 3 end
puts x # => 2

Section 17.11: Loop control with break, next, and redo
The flow of execution of a Ruby block may be controlled with the break, next, and redo statements.

break

The break statement will exit the block immediately. Any remaining instructions in the block will be skipped, and
the iteration will end:

actions = %w(run jump swim exit macarena)
index = 0

while index < actions.length
 action = actions[index]

 break if action == "exit"

 index += 1
 puts "Currently doing this action: #{action}"
end

Currently doing this action: run
Currently doing this action: jump
Currently doing this action: swim

next

The next statement will return to the top of the block immediately, and proceed with the next iteration. Any
remaining instructions in the block will be skipped:

actions = %w(run jump swim rest macarena)
index = 0

while index < actions.length
 action = actions[index]
 index += 1

 next if action == "rest"

 puts "Currently doing this action: #{action}"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 60

end

Currently doing this action: run
Currently doing this action: jump
Currently doing this action: swim
Currently doing this action: macarena

redo

The redo statement will return to the top of the block immediately, and retry the same iteration. Any remaining
instructions in the block will be skipped:

actions = %w(run jump swim sleep macarena)
index = 0
repeat_count = 0

while index < actions.length
 action = actions[index]
 puts "Currently doing this action: #{action}"

 if action == "sleep"
 repeat_count += 1
 redo if repeat_count < 3
 end

 index += 1
end

Currently doing this action: run
Currently doing this action: jump
Currently doing this action: swim
Currently doing this action: sleep
Currently doing this action: sleep
Currently doing this action: sleep
Currently doing this action: macarena

Enumerable iteration

In addition to loops, these statements work with Enumerable iteration methods, such as each and map:

[1, 2, 3].each do |item|
 next if item.even?
 puts "Item: #{item}"
end

Item: 1
Item: 3

Block result values

In both the break and next statements, a value may be provided, and will be used as a block result value:

even_value = for value in [1, 2, 3]
 break value if value.even?
end

puts "The first even value is: #{even_value}"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 61

The first even value is: 2

Section 17.12: return vs. next: non-local return in a block
Consider this broken snippet:

def foo
 bar = [1, 2, 3, 4].map do |x|
 return 0 if x.even?
 x
 end
 puts 'baz'
 bar
end
foo # => 0

One might expect return to yield a value for map's array of block results. So the return value of foo would be [1, 0,
3, 0]. Instead, return returns a value from the method foo. Notice that baz isn't printed, which means execution
never reached that line.

next with a value does the trick. It acts as a block-level return.

def foo
 bar = [1, 2, 3, 4].map do |x|
 next 0 if x.even?
 x
 end
 puts 'baz'
 bar
end
foo # baz
 # => [1, 0, 3, 0]

In the absence of a return, the value returned by the block is the value of its last expression.

Section 17.13: begin, end
The begin block is a control structure that groups together multiple statements.

begin
 a = 7
 b = 6
 a * b
end

A begin block will return the value of the last statement in the block. The following example will return 3.

begin
 1
 2
 3
end

The begin block is useful for conditional assignment using the ||= operator where multiple statements may be
required to return a result.

circumference ||=

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 62

 begin
 radius = 7
 tau = Math::PI * 2
 tau * radius
 end

It can also be combined with other block structures such as rescue, ensure, while, if, unless, etc to provide
greater control of program flow.

Begin blocks are not code blocks, like { ... } or do ... end; they cannot be passed to functions.

Section 17.14: Control flow with logic statements
While it might seem counterintuitive, you can use logical operators to determine whether or not a statement is run.
For instance:

File.exist?(filename) or STDERR.puts "#{filename} does not exist!"

This will check to see if the file exists and only print the error message if it doesn't. The or statement is lazy, which
means it'll stop executing once it's sure which whether it's value is true or false. As soon as the first term is found to
be true, there's no need to check the value of the other term. But if the first term is false, it must check the second
term.

A common use is to set a default value:

glass = glass or 'full' # Optimist!

That sets the value of glass to 'full' if it's not already set. More concisely, you can use the symbolic version of or:

glass ||= 'empty' # Pessimist.

It's also possible to run the second statement only if the first one is false:

File.exist?(filename) and puts "#{filename} found!"

Again, and is lazy so it will only execute the second statement if necessary to arrive at a value.

The or operator has lower precedence than and. Similarly, || has lower precedence than &&. The symbol forms
have higher precedence than the word forms. This is handy to know when you want to mix this technique with
assignment:

a = 1 and b = 2
#=> a==1
#=> b==2

a = 1 && b = 2; puts a, b
#=> a==2
#=> b==2

Note that the Ruby Style Guide recommends:

The and and or keywords are banned. The minimal added readability is just not worth the high probability
of introducing subtle bugs. For boolean expressions, always use && and || instead. For flow control, use
if and unless; && and || are also acceptable but less clear.

https://github.com/bbatsov/ruby-style-guide#no-and-or-or
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 63

Chapter 18: Methods
Functions in Ruby provide organized, reusable code to preform a set of actions. Functions simplify the coding
process, prevent redundant logic, and make code easier to follow. This topic describes the declaration and
utilization of functions, arguments, parameters, yield statements and scope in Ruby.

Section 18.1: Defining a method
Methods are defined with the def keyword, followed by the method name and an optional list of parameter names in
parentheses. The Ruby code between def and end represents the body of the method.

def hello(name)
 "Hello, #{name}"
end

A method invocation specifies the method name, the object on which it is to be invoked (sometimes called the
receiver), and zero or more argument values that are assigned to the named method parameters.

hello("World")
=> "Hello, World"

When the receiver is not explicit, it is self.

Parameter names can be used as variables within the method body, and the values of these named parameters
come from the arguments to a method invocation.

hello("World")
=> "Hello, World"
hello("All")
=> "Hello, All"

Section 18.2: Yielding to blocks
You can send a block to your method and it can call that block multiple times. This can be done by sending a
proc/lambda or such, but is easier and faster with yield:

def simple(arg1,arg2)
 puts "First we are here: #{arg1}"
 yield
 puts "Finally we are here: #{arg2}"
 yield
end
simple('start','end') { puts "Now we are inside the yield" }

#> First we are here: start
#> Now we are inside the yield
#> Finally we are here: end
#> Now we are inside the yield

Note that the { puts ... } is not inside the parentheses, it implicitly comes after. This also means we can only
have one yield block. We can pass arguments to the yield:

def simple(arg)
 puts "Before yield"
 yield(arg)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 64

 puts "After yield"
end
simple('Dave') { |name| puts "My name is #{name}" }

#> Before yield
#> My name is Dave
#> After yield

With yield we can easily make iterators or any functions that work on other code:

def countdown(num)
 num.times do |i|
 yield(num-i)
 end
end

countdown(5) { |i| puts "Call number #{i}" }

#> Call number 5
#> Call number 4
#> Call number 3
#> Call number 2
#> Call number 1

In fact, it is with yield that things like foreach, each and times are generally implemented in classes.

If you want to find out if you have been given a block or not, use block_given?:

class Employees
 def names
 ret = []
 @employees.each do |emp|
 if block_given?
 yield(emp.name)
 else
 ret.push(emp.name)
 end
 end

 ret
 end
end

This example assumes that the Employees class has an @employees list that can be iterated with each to get objects
that have employee names using the name method. If we are given a block, then we'll yield the name to the block,
otherwise we just push it to an array that we return.

Section 18.3: Default parameters
def make_animal_sound(sound = 'Cuack')
 puts sound
end

make_animal_sound('Mooo') # Mooo
make_animal_sound # Cuack

It's possible to include defaults for multiple arguments:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 65

def make_animal_sound(sound = 'Cuack', volume = 11)
 play_sound(sound, volume)
end

make_animal_sound('Mooo') # Spinal Tap cow

However, it's not possible to supply the second without also supplying the first. Instead of using positional
parameters, try keyword parameters:

def make_animal_sound(sound: 'Cuack', volume: 11)
 play_sound(sound, volume)
end

make_animal_sound(volume: 1) # Duck whisper

Or a hash parameter that stores options:

def make_animal_sound(options = {})
 options[:sound] ||= 'Cuak'
 options[:volume] ||= 11
 play_sound(sound, volume)
end

make_animal_sound(:sound => 'Mooo')

Default parameter values can be set by any ruby expression. The expression will run in the context of the method,
so you can even declare local variables here. Note, won't get through code review. Courtesy of caius for pointing
this out.

def make_animal_sound(sound = (raise 'TUU-too-TUU-too...')); p sound; end

make_animal_sound 'blaaaa' # => 'blaaaa'
make_animal_sound # => TUU-too-TUU-too... (RuntimeError)

Section 18.4: Optional parameter(s) (splat operator)
def welcome_guests(*guests)
 guests.each { |guest| puts "Welcome #{guest}!" }
end

welcome_guests('Tom') # Welcome Tom!
welcome_guests('Rob', 'Sally', 'Lucas') # Welcome Rob!
 # Welcome Sally!
 # Welcome Lucas!

Note that welcome_guests(['Rob', 'Sally', 'Lucas']) will output Welcome ["Rob", "Sally", "Lucas"]!
Instead, if you have a list, you can do welcome_guests(*['Rob', 'Sally', 'Lucas']) and that will work as
welcome_guests('Rob', 'Sally', 'Lucas').

Section 18.5: Required default optional parameter mix
def my_mix(name,valid=true, *opt)
 puts name
 puts valid
 puts opt

http://stackoverflow.com/questions/695431/in-a-method-that-take-multiple-optional-parameters-how-can-any-but-the-first-be
https://gist.github.com/caius/1528785
https://gist.github.com/caius/1528785
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 66

end

Call as follows:

my_mix('me')
'me'
true
[]

my_mix('me', false)
'me'
false
[]

my_mix('me', true, 5, 7)
'me'
true
[5,7]

Section 18.6: Use a function as a block
Many functions in Ruby accept a block as an argument. E.g.:

[0, 1, 2].map {|i| i + 1}
 => [1, 2, 3]

If you already have a function that does what you want, you can turn it into a block using &method(:fn):

def inc(num)
 num + 1
end

[0, 1, 2].map &method(:inc)
 => [1, 2, 3]

Section 18.7: Single required parameter
def say_hello_to(name)
 puts "Hello #{name}"
end

say_hello_to('Charles') # Hello Charles

Section 18.8: Tuple Arguments
A method can take an array parameter and destructure it immediately into named local variables. Found on
Mathias Meyer's blog.

def feed(amount, (animal, food))

 p "#{amount} #{animal}s chew some #{food}"

end

feed 3, ['rabbit', 'grass'] # => "3 rabbits chew some grass"

http://www.paperplanes.de/2012/2/16/fun-with-ruby-block-parameters.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 67

Section 18.9: Capturing undeclared keyword arguments
(double splat)
The ** operator works similarly to the * operator but it applies to keyword parameters.

def options(required_key:, optional_key: nil, **other_options)
 other_options
end

options(required_key: 'Done!', foo: 'Foo!', bar: 'Bar!')
#> { :foo => "Foo!", :bar => "Bar!" }

In the above example, if the **other_options is not used, an ArgumentError: unknown keyword: foo, bar error
would be raised.

def without_double_splat(required_key:, optional_key: nil)
 # do nothing
end

without_double_splat(required_key: 'Done!', foo: 'Foo!', bar: 'Bar!')
#> ArgumentError: unknown keywords: foo, bar

This is handy when you have a hash of options that you want to pass to a method and you do not want to filter the
keys.

def options(required_key:, optional_key: nil, **other_options)
 other_options
end

my_hash = { required_key: true, foo: 'Foo!', bar: 'Bar!' }

options(my_hash)
#> { :foo => "Foo!", :bar => "Bar!" }

It is also possible to unpack a hash using the ** operator. This allows you to supply keyword directly to a method in
addition to values from other hashes:

my_hash = { foo: 'Foo!', bar: 'Bar!' }

options(required_key: true, **my_hash)
#> { :foo => "Foo!", :bar => "Bar!" }

Section 18.10: Multiple required parameters
def greet(greeting, name)
 puts "#{greeting} #{name}"
end

greet('Hi', 'Sophie') # Hi Sophie

Section 18.11: Method Definitions are Expressions
Defining a method in Ruby 2.x returns a symbol representing the name:

class Example

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 68

 puts def hello
 end
end

#=> :hello

This allows for interesting metaprogramming techniques. For instance, methods can be wrapped by other
methods:

class Class
 def logged(name)
 original_method = instance_method(name)
 define_method(name) do |*args|
 puts "Calling #{name} with #{args.inspect}."
 original_method.bind(self).call(*args)
 puts "Completed #{name}."
 end
 end
end

class Meal
 def initialize
 @food = []
 end

 logged def add(item)
 @food << item
 end
end

meal = Meal.new
meal.add "Coffee"
Calling add with ["Coffee"].
Completed add.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 69

Chapter 19: Hashes
A Hash is a dictionary-like collection of unique keys and their values. Also called associative arrays, they are similar
to Arrays, but where an Array uses integers as its index, a Hash allows you to use any object type. You retrieve or
create a new entry in a Hash by referring to its key.

Section 19.1: Creating a hash
A hash in Ruby is an object that implements a hash table, mapping keys to values. Ruby supports a specific literal
syntax for defining hashes using {}:

my_hash = {} # an empty hash
grades = { 'Mark' => 15, 'Jimmy' => 10, 'Jack' => 10 }

A hash can also be created using the standard new method:

my_hash = Hash.new # any empty hash
my_hash = {} # any empty hash

Hashes can have values of any type, including complex types like arrays, objects and other hashes:

mapping = { 'Mark' => 15, 'Jimmy' => [3,4], 'Nika' => {'a' => 3, 'b' => 5} }
mapping['Mark'] # => 15
mapping['Jimmy'] # => [3, 4]
mapping['Nika'] # => {"a"=>3, "b"=>5}

Also keys can be of any type, including complex ones:

mapping = { 'Mark' => 15, 5 => 10, [1, 2] => 9 }
mapping['Mark'] # => 15
mapping[[1, 2]] # => 9

Symbols are commonly used as hash keys, and Ruby 1.9 introduced a new syntax specifically to shorten this
process. The following hashes are equivalent:

Valid on all Ruby versions
grades = { :Mark => 15, :Jimmy => 10, :Jack => 10 }
Valid in Ruby version 1.9+
grades = { Mark: 15, Jimmy: 10, Jack: 10 }

The following hash (valid in all Ruby versions) is different, because all keys are strings:

grades = { "Mark" => 15, "Jimmy" => 10, "Jack" => 10 }

While both syntax versions can be mixed, the following is discouraged.

mapping = { :length => 45, width: 10 }

With Ruby 2.2+, there is an alternative syntax for creating a hash with symbol keys (most useful if the symbol
contains spaces):

grades = { "Jimmy Choo": 10, :"Jack Sparrow": 10 }
=> { :"Jimmy Choo" => 10, :"Jack Sparrow" => 10}

https://en.wikipedia.org/wiki/Hash_table
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 70

Section 19.2: Setting Default Values
By default, attempting to lookup the value for a key which does not exist will return nil. You can optionally specify
some other value to return (or an action to take) when the hash is accessed with a non-existent key. Although this is
referred to as "the default value", it need not be a single value; it could, for example, be a computed value such as
the length of the key.

The default value of a hash can be passed to its constructor:

h = Hash.new(0)

h[:hi] = 1
puts h[:hi] # => 1
puts h[:bye] # => 0 returns default value instead of nil

A default can also be specified on an already constructed Hash:

my_hash = { human: 2, animal: 1 }
my_hash.default = 0
my_hash[:plant] # => 0

It is important to note that the default value is not copied each time a new key is accessed, which can lead to
surprising results when the default value is a reference type:

Use an empty array as the default value
authors = Hash.new([])

Append a book title
authors[:homer] << 'The Odyssey'

All new keys map to a reference to the same array:
authors[:plato] # => ['The Odyssey']

To circumvent this problem, the Hash constructor accepts a block which is executed each time a new key is
accessed, and the returned value is used as the default:

authors = Hash.new { [] }

Note that we're using += instead of <<, see below
authors[:homer] += ['The Odyssey']
authors[:plato] # => []

authors # => {:homer=>["The Odyssey"]}

Note that above we had to use += instead of << because the default value is not automatically assigned to the hash;
using << would have added to the array, but authors[:homer] would have remained undefined:

authors[:homer] << 'The Odyssey' # ['The Odyssey']
authors[:homer] # => []
authors # => {}

In order to be able to assign default values on access, as well as to compute more sophisticated defaults, the
default block is passed both the hash and the key:

authors = Hash.new { |hash, key| hash[key] = [] }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 71

authors[:homer] << 'The Odyssey'
authors[:plato] # => []

authors # => {:homer=>["The Odyssey"], :plato=>[]}

You can also use a default block to take an action and/or return a value dependent on the key (or some other data):

chars = Hash.new { |hash,key| key.length }

chars[:test] # => 4

You can even create more complex hashes:

page_views = Hash.new { |hash, key| hash[key] = { count: 0, url: key } }
page_views["http://example.com"][:count] += 1
page_views # => {"http://example.com"=>{:count=>1, :url=>"http://example.com"}}

In order to set the default to a Proc on an already-existing hash, use default_proc=:

authors = {}
authors.default_proc = proc { [] }

authors[:homer] += ['The Odyssey']
authors[:plato] # => []

authors # {:homer=>["The Odyssey"]}

Section 19.3: Accessing Values
Individual values of a hash are read and written using the [] and []= methods:

my_hash = { length: 4, width: 5 }

my_hash[:length] #=> => 4

my_hash[:height] = 9

my_hash #=> {:length => 4, :width => 5, :height => 9 }

By default, accessing a key which has not been added to the hash returns nil, meaning it is always safe to attempt
to look up a key's value:

my_hash = {}

my_hash[:age] # => nil

Hashes can also contain keys in strings. If you try to access them normally it will just return a nil, instead you
access them by their string keys:

my_hash = { "name" => "user" }

my_hash[:name] # => nil
my_hash["name"] # => user

For situations where keys are expected or required to exist, hashes have a fetch method which will raise an
exception when accessing a key that does not exist:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 72

my_hash = {}

my_hash.fetch(:age) #=> KeyError: key not found: :age

fetch accepts a default value as its second argument, which is returned if the key has not been previously set:

my_hash = {}
my_hash.fetch(:age, 45) #=> => 45

fetch can also accept a block which is returned if the key has not been previously set:

my_hash = {}
my_hash.fetch(:age) { 21 } #=> 21

my_hash.fetch(:age) do |k|
 puts "Could not find #{k}"
end

#=> Could not find age

Hashes also support a store method as an alias for []=:

my_hash = {}

my_hash.store(:age, 45)

my_hash #=> { :age => 45 }

You can also get all values of a hash using the values method:

my_hash = { length: 4, width: 5 }

my_hash.values #=> [4, 5]

Note: This is only for Ruby 2.3+ #dig is handy for nested Hashs. Extracts the nested value specified by the
sequence of idx objects by calling dig at each step, returning nil if any intermediate step is nil.

h = { foo: {bar: {baz: 1}}}

h.dig(:foo, :bar, :baz) # => 1
h.dig(:foo, :zot, :xyz) # => nil

g = { foo: [10, 11, 12] }
g.dig(:foo, 1) # => 11

Section 19.4: Automatically creating a Deep Hash
Hash has a default value for keys that are requested but don't exist (nil):

a = {}
p a[:b] # => nil

When creating a new Hash, one can specify the default:

b = Hash.new 'puppy'
p b[:b] # => 'puppy'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 73

Hash.new also takes a block, which allows you to automatically create nested hashes, such as Perl's autovivification
behavior or mkdir -p:

h is the hash you're creating, and k the key.
#
hash = Hash.new { |h, k| h[k] = Hash.new &h.default_proc }
hash[:a][:b][:c] = 3

p hash # => { a: { b: { c: 3 } } }

Section 19.5: Iterating Over a Hash
A Hash includes the Enumerable module, which provides several iteration methods, such as: Enumerable#each,
Enumerable#each_pair, Enumerable#each_key, and Enumerable#each_value.

.each and .each_pair iterate over each key-value pair:

h = { "first_name" => "John", "last_name" => "Doe" }
h.each do |key, value|
 puts "#{key} = #{value}"
end

=> first_name = John
last_name = Doe

.each_key iterates over the keys only:

h = { "first_name" => "John", "last_name" => "Doe" }
h.each_key do |key|
 puts key
end

=> first_name
last_name

.each_value iterates over the values only:

h = { "first_name" => "John", "last_name" => "Doe" }
h.each_value do |value|
 puts value
end

=> John
Doe

.each_with_index iterates over the elements and provides the index of the iteration:

h = { "first_name" => "John", "last_name" => "Doe" }
h.each_with_index do |(key, value), index|
 puts "index: #{index} | key: #{key} | value: #{value}"
end

=> index: 0 | key: first_name | value: John
index: 1 | key: last_name | value: Doe

http://ruby-doc.org/core-2.3.1/Enumerable.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 74

Section 19.6: Filtering hashes
SELECT returns a new hash with key-value pairs for which the block evaluates to true.

{ :a => 1, :b => 2, :c => 3 }.select { |k, v| k != :a && v.even? } # => { :b => 2 }

When you will not need the key or value in a filter block, the convention is to use an _ in that place:

{ :a => 1, :b => 2, :c => 3 }.select { |_, v| v.even? } # => { :b => 2 }
{ :a => 1, :b => 2, :c => 3 }.select { |k, _| k == :c } # => { :c => 3 }

reject returns a new hash with key-value pairs for which the block evaluates to false:

{ :a => 1, :b => 2, :c => 3 }.reject { |_, v| v.even? } # => { :a => 1, :c => 3 }
{ :a => 1, :b => 2, :c => 3 }.reject { |k, _| k == :b } # => { :a => 1, :c => 3 }

Section 19.7: Conversion to and from Arrays
Hashes can be freely converted to and from arrays. Converting a hash of key/value pairs into an array will produce
an array containing nested arrays for pair:

{ :a => 1, :b => 2 }.to_a # => [[:a, 1], [:b, 2]]

In the opposite direction a Hash can be created from an array of the same format:

[[:x, 3], [:y, 4]].to_h # => { :x => 3, :y => 4 }

Similarly, Hashes can be initialized using Hash[] and a list of alternating keys and values:

Hash[:a, 1, :b, 2] # => { :a => 1, :b => 2 }

Or from an array of arrays with two values each:

Hash[[[:x, 3], [:y, 4]]] # => { :x => 3, :y => 4 }

Hashes can be converted back to an Array of alternating keys and values using flatten():

{ :a => 1, :b => 2 }.flatten # => [:a, 1, :b, 2]

The easy conversion to and from an array allows Hash to work well with many Enumerable methods such as collect
and zip:

Hash[('a'..'z').collect{ |c| [c, c.upcase] }] # => { 'a' => 'A', 'b' => 'B', ... }

people = ['Alice', 'Bob', 'Eve']
height = [5.7, 6.0, 4.9]
Hash[people.zip(height)] # => { 'Alice' => 5.7, 'Bob' => '6.0', 'Eve' => 4.9 }

Section 19.8: Overriding hash function
Ruby hashes use the methods hash and eql? to perform the hash operation and assign objects stored in the hash
to internal hash bins. The default implementation of hash in Ruby is the murmur hash function over all member
fields of the hashed object. To override this behavior it is possible to override hash and eql? methods.

https://en.wikipedia.org/wiki/MurmurHash
https://github.com/ruby/ruby/blob/1b5acebef2d447a3dbed6cf5e146fda74b81f10d/st.c
https://github.com/ruby/ruby/blob/1b5acebef2d447a3dbed6cf5e146fda74b81f10d/st.c
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 75

As with other hash implementations, two objects a and b, will be hashed to the same bucket if a.hash == b.hash
and will be deemed identical if a.eql?(b). Thus, when reimplementing hash and eql? one should take care to
ensure that if a and b are equal under eql? they must return the same hash value. Otherwise this might result in
duplicate entries in a hash. Conversely, a poor choice in hash implementation might lead many objects to share the
same hash bucket, effectively destroying the O(1) look-up time and causing O(n) for calling eql? on all objects.

In the example below only the instance of class A is stored as a key, as it was added first:

class A
 def initialize(hash_value)
 @hash_value = hash_value
 end
 def hash
 @hash_value # Return the value given externally
 end
 def eql?(b)
 self.hash == b.hash
 end
end

class B < A
end

a = A.new(1)
b = B.new(1)

h = {}
h[a] = 1
h[b] = 2

raise "error" unless h.size == 1
raise "error" unless h.include? b
raise "error" unless h.include? a

Section 19.9: Getting all keys or values of hash
{foo: 'bar', biz: 'baz'}.keys # => [:foo, :biz]
{foo: 'bar', biz: 'baz'}.values # => ["bar", "baz"]
{foo: 'bar', biz: 'baz'}.to_a # => [[:foo, "bar"], [:biz, "baz"]]
{foo: 'bar', biz: 'baz'}.each #<Enumerator: {:foo=>"bar", :biz=>"baz"}:each>

Section 19.10: Modifying keys and values
You can create a new hash with the keys or values modified, indeed you can also add or delete keys, using inject
(AKA, reduce). For example to produce a hash with stringified keys and upper case values:

fruit = { name: 'apple', color: 'green', shape: 'round' }
=> {:name=>"apple", :color=>"green", :shape=>"round"}

new_fruit = fruit.inject({}) { |memo, (k,v)| memo[k.to_s] = v.upcase; memo }

=> new_fruit is {"name"=>"APPLE", "color"=>"GREEN", "shape"=>"ROUND"}

Hash is an enumerable, in essence a collection of key/value pairs. Therefore is has methods such as each, map and
inject.

For every key/value pair in the hash the given block is evaluated, the value of memo on the first run is the seed

http://ruby-doc.org/core-2.3.1/Enumerable.html#method-i-inject
https://ruby-doc.org/core-2.4.1/Enumerable.html#method-i-reduce
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 76

value passed to inject, in our case an empty hash, {}. The value of memo for subsequent evaluations is the
returned value of the previous blocks evaluation, this is why we modify memo by setting a key with a value and then
return memo at the end. The return value of the final blocks evaluation is the return value of inject, in our case
memo.

To avoid the having to provide the final value, you could use each_with_object instead:

new_fruit = fruit.each_with_object({}) { |(k,v), memo| memo[k.to_s] = v.upcase }

Or even map:

Version ≥ 1.8

new_fruit = Hash[fruit.map{ |k,v| [k.to_s, v.upcase] }]

(See this answer for more details, including how to manipulate hashes in place.)

Section 19.11: Set Operations on Hashes
Intersection of Hashes

To get the intersection of two hashes, return the shared keys the values of which are equal:

hash1 = { :a => 1, :b => 2 }
hash2 = { :b => 2, :c => 3 }
hash1.select { |k, v| (hash2.include?(k) && hash2[k] == v) } # => { :b => 2 }

Union (merge) of hashes:

keys in a hash are unique, if a key occurs in both hashes which are to be merged, the one from the hash that
merge is called on is overwritten:

hash1 = { :a => 1, :b => 2 }
hash2 = { :b => 4, :c => 3 }

hash1.merge(hash2) # => { :a => 1, :b => 4, :c => 3 }
hash2.merge(hash1) # => { :b => 2, :c => 3, :a => 1 }

http://ruby-doc.org/core-2.3.1/Enumerable.html#method-i-each_with_object
https://ruby-doc.org/core-2.4.1/Enumerable.html#method-i-map
http://stackoverflow.com/a/5189259/7948068
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 77

Chapter 20: Blocks and Procs and
Lambdas
Section 20.1: Lambdas
lambda using the arrow syntax
hello_world = -> { 'Hello World!' }
hello_world[]
'Hello World!'

lambda using the arrow syntax accepting 1 argument
hello_world = ->(name) { "Hello #{name}!" }
hello_world['Sven']
"Hello Sven!"

the_thing = lambda do |magic, ohai, dere|
 puts "magic! #{magic}"
 puts "ohai #{dere}"
 puts "#{ohai} means hello"
end

the_thing.call(1, 2, 3)
magic! 1
ohai 3
2 means hello

the_thing.call(1, 2)
ArgumentError: wrong number of arguments (2 for 3)

the_thing[1, 2, 3, 4]
ArgumentError: wrong number of arguments (4 for 3)

You can also use -> to create and .() to call lambda

the_thing = ->(magic, ohai, dere) {
 puts "magic! #{magic}"
 puts "ohai #{dere}"
 puts "#{ohai} means hello"
}

the_thing.(1, 2, 3)
=> magic! 1
=> ohai 3
=> 2 means hello

Here you can see that a lambda is almost the same as a proc. However, there are several caveats:

The arity of a lambda's arguments are enforced; passing the wrong number of arguments to a lambda, will
raise an ArgumentError. They can still have default parameters, splat parameters, etc.

returning from within a lambda returns from the lambda, while returning from a proc returns out of the
enclosing scope:

def try_proc
 x = Proc.new {
 return # Return from try_proc
 }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 78

 x.call
 puts "After x.call" # this line is never reached
end

def try_lambda
 y = -> {
 return # return from y
 }
 y.call
 puts "After y.call" # this line is not skipped
end

try_proc # No output
try_lambda # Outputs "After y.call"

Section 20.2: Partial Application and Currying
Technically, Ruby doesn't have functions, but methods. However, a Ruby method behaves almost identically to
functions in other language:

def double(n)
 n * 2
end

This normal method/function takes a parameter n, doubles it and returns the value. Now let's define a higher order
function (or method):

def triple(n)
 lambda {3 * n}
end

Instead of returning a number, triple returns a method. You can test it using the Interactive Ruby Shell:

$ irb --simple-prompt
>> def double(n)
>> n * 2
>> end
=> :double
>> def triple(n)
>> lambda {3 * n}
>> end
=> :triple
>> double(2)
=> 4
>> triple(2)
=> #<Proc:0x007fd07f07bdc0@(irb):7 (lambda)>

If you want to actually get the tripled number, you need to call (or "reduce") the lambda:

triple_two = triple(2)
triple_two.call # => 6

Or more concisely:

triple(2).call

https://en.wikipedia.org/wiki/Interactive_Ruby_Shell
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 79

Currying and Partial Applications

This is not useful in terms of defining very basic functionality, but it is useful if you want to have methods/functions
that are not instantly called or reduced. For example, let's say you want to define methods that add a number by a
specific number (for example add_one(2) = 3). If you had to define a ton of these you could do:

def add_one(n)
 n + 1
end

def add_two(n)
 n + 2
end

However, you could also do this:

add = -> (a, b) { a + b }
add_one = add.curry.(1)
add_two = add.curry.(2)

Using lambda calculus we can say that add is (λa.(λb.(a+b))). Currying is a way of partially applying add. So
add.curry.(1), is (λa.(λb.(a+b)))(1) which can be reduced to (λb.(1+b)). Partial application means that we
passed one argument to add but left the other argument to be supplied later. The output is a specialized method.

More useful examples of currying

Let's say we have really big general formula, that if we specify certain arguments to it, we can get specific formulae
from it. Consider this formula:

f(x, y, z) = sin(x*y)*sin(y*z)*sin(z*x)

This formula is made for working in three dimensions, but let's say we only want this formula with regards to y and
z. Let's also say that to ignore x, we want to set it's value to pi/2. Let's first make the general formula:

f = ->(x, y, z) {Math.sin(x*y) * Math.sin(y*z) * Math.sin(z*x)}

Now, let's use currying to get our yz formula:

f_yz = f.curry.(Math::PI/2)

Then to call the lambda stored in f_yz:

f_xy.call(some_value_x, some_value_y)

This is pretty simple, but let's say we want to get the formula for xz. How can we set y to Math::PI/2 if it's not the
last argument? Well, it's a bit more complicated:

f_xz = -> (x,z) {f.curry.(x, Math::PI/2, z)}

In this case, we need to provide placeholders for the parameter we aren't pre-filling. For consistency we could write
f_xy like this:

f_xy = -> (x,y) {f.curry.(x, y, Math::PI/2)}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 80

Here's how the lambda calculus works for f_yz:

f = (λx.(λy.(λz.(sin(x*y) * sin(y*z) * sin(z*x))))
f_yz = (λx.(λy.(λz.(sin(x*y) * sin(y*z) * sin(z*x)))) (π/2) # Reduce =>
f_yz = (λy.(λz.(sin((π/2)*y) * sin(y*z) * sin(z*(π/2))))

Now let's look at f_xz

f = (λx.(λy.(λz.(sin(x*y) * sin(y*z) * sin(z*x))))
f_xz = (λx.(λy.(λz.(sin(x*y) * sin(y*z) * sin(z*x)))) (λt.t) (π/2) # Reduce =>
f_xz = (λt.(λz.(sin(t*(π/2)) * sin((π/2)*z) * sin(z*t))))

For more reading about lambda calculus try this.

Section 20.3: Objects as block arguments to methods
Putting a & (ampersand) in front of an argument will pass it as the method's block. Objects will be converted to a
Proc using the to_proc method.

class Greeter
 def to_proc
 Proc.new do |item|
 puts "Hello, #{item}"
 end
 end
end

greet = Greeter.new

%w(world life).each(&greet)

This is a common pattern in Ruby and many standard classes provide it.

For example, Symbols implement to_proc by sending themselves to the argument:

Example implementation
class Symbol
 def to_proc
 Proc.new do |receiver|
 receiver.send self
 end
 end
end

This enables the useful &:symbol idiom, commonly used with Enumerable objects:

letter_counts = %w(just some words).map(&:length) # [4, 4, 5]

Section 20.4: Converting to Proc
Objects that respond to to_proc can be converted to procs with the & operator (which will also allow them to be
passed as blocks).

The class Symbol defines #to_proc so it tries to call the corresponding method on the object it receives as
parameter.

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
http://ruby-doc.org/core/Symbol.html
http://ruby-doc.org/core/Enumerable.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 81

p ['rabbit', 'grass'].map(&:upcase) # => ["RABBIT", "GRASS"]

Method objects also define #to_proc.

output = method(:p)

['rabbit', 'grass'].map(&output) # => "rabbit\ngrass"

Section 20.5: Blocks
Blocks are chunks of code enclosed between braces {} (usually for single-line blocks) or do..end (used for multi-line
blocks).

5.times { puts "Hello world" } # recommended style for single line blocks

5.times do
 print "Hello "
 puts "world"
end # recommended style for multi-line blocks

5.times {
 print "hello "
 puts "world" } # does not throw an error but is not recommended

Note: braces have higher precedence than do..end

Yielding

Blocks can be used inside methods and functions using the word yield:

def block_caller
 puts "some code"
 yield
 puts "other code"
end
block_caller { puts "My own block" } # the block is passed as an argument to the method.
#some code
#My own block
#other code

Be careful though if yield is called without a block it will raise a LocalJumpError. For this purpose ruby provides
another method called block_given? this allows you to check if a block was passed before calling yield

def block_caller
 puts "some code"
 if block_given?
 yield
 else
 puts "default"
 end
 puts "other code"
end
block_caller
some code
default
other code
block_caller { puts "not defaulted"}
some code

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 82

not defaulted
other code

yield can offer arguments to the block as well

def yield_n(n)
 p = yield n if block_given?
 p || n
end
yield_n(12) {|n| n + 7 }
#=> 19
yield_n(4)
#=> 4

While this is a simple example yielding can be very useful for allowing direct access to instance variables or
evaluations inside the context of another object. For Example:

class Application
 def configuration
 @configuration ||= Configuration.new
 block_given? ? yield(@configuration) : @configuration
 end
end
class Configuration; end

app = Application.new
app.configuration do |config|
 puts config.class.name
end
Configuration
#=> nil
app.configuration
#=> #<Configuration:0x2bf1d30>

As you can see using yield in this manner makes the code more readable than continually calling
app.configuration.#method_name. Instead you can perform all the configuration inside the block keeping the code
contained.

Variables

Variables for blocks are local to the block (similar to the variables of functions), they die when the block is executed.

my_variable = 8
3.times do |x|
 my_variable = x
 puts my_variable
end
puts my_variable
#=> 0
1
2
8

Blocks can't be saved, they die once executed. In order to save blocks you need to use procs and lambdas.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 83

Chapter 21: Iteration
Section 21.1: Each
Ruby has many types of enumerators but the first and most simple type of enumerator to start with is each. We will
print out even or odd for each number between 1 and 10 to show how each works.

Basically there are two ways to pass so called blocks. A block is a piece of code being passed which will be
executed by the method which is called. The each method takes a block which it calls for every element of the
collection of objects it was called on.

There are two ways to pass a block to a method:

Method 1: Inline
(1..10).each { |i| puts i.even? ? 'even' : 'odd' }

This is a very compressed and ruby way to solve this. Let's break this down piece by piece.

(1..10) is a range from 1 to 10 inclusive. If we wanted it to be 1 to 10 exclusive, we would write (1...10).1.
.each is an enumerator that enumerates over each element in the object it is acting on. In this case, it acts on2.
each number in the range.
{ |i| puts i.even? ? 'even' : 'odd' } is the block for the each statement, which itself can be broken3.
down further.

|i| this means that each element in the range is represented within the block by the identifier i.1.
puts is an output method in Ruby that has an automatic line break after each time it prints. (We can2.
use print if we don't want the automatic line break)
i.even? checks if i is even. We could have also used i % 2 == 0; however, it is preferable to use built3.
in methods.
? "even" : "odd" this is ruby's ternary operator. The way a ternary operator is constructed is4.
expression ? a : b. This is short for

if expression a else b end

For code longer than one line the block should be passed as a multiline block.

Method 2: Multiline
(1..10).each do |i| if i.even? puts 'even' else puts 'odd' end end

In a multiline block the do replaces the opening bracket and end replaces the closing bracket from the inline
style.

Ruby supports reverse_each as well. It will iterate the array backwards.

@arr = [1,2,3,4]
puts @arr.inspect # output is [1,2,3,4]

print "Reversed array elements["
@arr.reverse_each do |val|
 print " #{val} " # output is 4 3 2 1
end
print "]\n"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 84

Section 21.2: Implementation in a class
Enumerable is the most popular module in Ruby. Its purpose is to provide you with iterable methods like map,
SELECT, reduce, etc. Classes that use Enumerable include Array, Hash, Range. To use it, you have to include
Enumerable and implement each.

class NaturalNumbers
 include Enumerable

 def initialize(upper_limit)
 @upper_limit = upper_limit
 end

 def each(&block)
 0.upto(@upper_limit).each(&block)
 end
end

n = NaturalNumbers.new(6)

n.reduce(:+) # => 21
n.select(&:even?) # => [0, 2, 4, 6]
n.map { |number| number ** 2 } # => [0, 1, 4, 9, 16, 25, 36]

Section 21.3: Iterating over complex objects
Arrays

You can iterate over nested arrays:

[[1, 2], [3, 4]].each { |(a, b)| p "a: #{ a }", "b: #{ b }" }

The following syntax is allowed too:

[[1, 2], [3, 4]].each { |a, b| "a: #{ a }", "b: #{ b }" }

Will produce:

"a: 1"
"b: 2"
"a: 3"
"b: 4"

Hashes

You can iterate over key-value pairs:

{a: 1, b: 2, c: 3}.each { |pair| p "pair: #{ pair }" }

Will produce:

"pair: [:a, 1]"
"pair: [:b, 2]"
"pair: [:c, 3]"

You can iterate over keys and values simultaneously:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 85

{a: 1, b: 2, c: 3}.each { |(k, v)| p "k: #{ k }", "v: #{ k }" }

Will produce:

"k: a"
"v: a"
"k: b"
"v: b"
"k: c"
"v: c"

Section 21.4: For iterator
This iterates from 4 to 13 (inclusive).

for i in 4..13
 puts "this is #{i}.th number"
end

We can also iterate over arrays using for

names = ['Siva', 'Charan', 'Naresh', 'Manish']

for name in names
 puts name
end

Section 21.5: Iteration with index
Sometimes you want to know the position (index) of the current element while iterating over an enumerator. For
such purpose, Ruby provides the with_index method. It can be applied to all the enumerators. Basically, by adding
with_index to an enumeration, you can enumerate that enumeration. Index is passed to a block as the second
argument.

[2,3,4].map.with_index { |e, i| puts "Element of array number #{i} => #{e}" }
#Element of array number 0 => 2
#Element of array number 1 => 3
#Element of array number 2 => 4
#=> [nil, nil, nil]

with_index has an optional argument – the first index which is 0 by default:

[2,3,4].map.with_index(1) { |e, i| puts "Element of array number #{i} => #{e}" }
#Element of array number 1 => 2
#Element of array number 2 => 3
#Element of array number 3 => 4
#=> [nil, nil, nil]

There is a specific method each_with_index. The only difference between it and each.with_index is that you can't
pass an argument to that, so the first index is 0 all the time.

[2,3,4].each_with_index { |e, i| puts "Element of array number #{i} => #{e}" }
#Element of array number 0 => 2
#Element of array number 1 => 3
#Element of array number 2 => 4

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 86

#=> [2, 3, 4]

Section 21.6: Map
Returns the changed object, but the original object remains as it was. For example:

arr = [1, 2, 3]
arr.map { |i| i + 1 } # => [2, 3, 4]
arr # => [1, 2, 3]

map! changes the original object:

arr = [1, 2, 3]
arr.map! { |i| i + 1 } # => [2, 3, 4]
arr # => [2, 3, 4]

Note: you can also use collect to do the same thing.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 87

Chapter 22: Exceptions
Section 22.1: Creating a custom exception type
A custom exception is any class that extends Exception or a subclass of Exception.

In general, you should always extend StandardError or a descendant. The Exception family are usually for virtual-
machine or system errors, rescuing them can prevent a forced interruption from working as expected.

Defines a new custom exception called FileNotFound
class FileNotFound < StandardError
end

def read_file(path)
 File.exist?(path) || raise(FileNotFound, "File #{path} not found")
 File.read(path)
end

read_file("missing.txt") #=> raises FileNotFound.new("File `missing.txt` not found")
read_file("valid.txt") #=> reads and returns the content of the file

It's common to name exceptions by adding the Error suffix at the end:

ConnectionError

DontPanicError

However, when the error is self-explanatory, you don't need to add the Error suffix because would be redundant:

FileNotFound vs FileNotFoundError
DatabaseExploded vs DatabaseExplodedError

Section 22.2: Handling multiple exceptions
You can handle multiple errors in the same rescue declaration:

begin
 # an execution that may fail
rescue FirstError, SecondError => e
 # do something if a FirstError or SecondError occurs
end

You can also add multiple rescue declarations:

begin
 # an execution that may fail
rescue FirstError => e
 # do something if a FirstError occurs
rescue SecondError => e
 # do something if a SecondError occurs
rescue => e
 # do something if a StandardError occurs
end

The order of the rescue blocks is relevant: the first match is the one executed. Therefore, if you put StandardError
as the first condition and all your exceptions inherit from StandardError, then the other rescue statements will
never be executed.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 88

begin
 # an execution that may fail
rescue => e
 # this will swallow all the errors
rescue FirstError => e
 # do something if a FirstError occurs
rescue SecondError => e
 # do something if a SecondError occurs
end

Some blocks have implicit exception handling like def, class, and module. These blocks allow you to skip the begin
statement.

def foo
 ...
rescue CustomError
 ...
ensure
 ...
end

Section 22.3: Handling an exception
Use the begin/rescue block to catch (rescue) an exception and handle it:

begin
 # an execution that may fail
rescue
 # something to execute in case of failure
end

A rescue clause is analogous to a catch block in a curly brace language like C# or Java.

A bare rescue like this rescues StandardError.

Note: Take care to avoid catching Exception instead of the default StandardError. The Exception class includes
SystemExit and NoMemoryError and other serious exceptions that you usually don't want to catch. Always consider
catching StandardError (the default) instead.

You can also specify the exception class that should be rescued:

begin
 # an excecution that may fail
rescue CustomError
 # something to execute in case of CustomError
 # or descendant
end

This rescue clause will not catch any exception that is not a CustomError.

You can also store the exception in a specific variable:

begin
 # an excecution that may fail
rescue CustomError => error
 # error contains the exception
 puts error.message # provide human-readable details about what went wrong.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 89

 puts error.backtrace.inspect # return an array of strings that represent the call stack
end

If you failed to handle an exception, you can raise it any time in a rescue block.

begin
 #here goes your code
rescue => e
 #failed to handle
 raise e
end

If you want to retry your begin block, call retry:

begin
 #here goes your code
rescue StandardError => e
 #for some reason you want to retry you code
 retry
end

You can be stuck in a loop if you catch an exception in every retry. To avoid this, limit your retry_count to a certain
number of tries.

retry_count = 0
begin
 # an excecution that may fail
rescue
 if retry_count < 5
 retry_count = retry_count + 1
 retry
 else
 #retry limit exceeds, do something else
 end

You can also provide an else block or an ensure block. An else block will be executed when the begin block
completes without an exception thrown. An ensure block will always be executed. An ensure block is analogous to a
finally block in a curly brace language like C# or Java.

begin
 # an execution that may fail
rescue
 # something to execute in case of failure
else
 # something to execute in case of success
ensure
 # something to always execute
end

If you are inside a def, module or class block, there is no need to use the begin statement.

def foo
 ...
rescue
 ...
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 90

Section 22.4: Raising an exception
To raise an exception use Kernel#raise passing the exception class and/or message:

raise StandardError # raises a StandardError.new
raise StandardError, "An error" # raises a StandardError.new("An error")

You can also simply pass an error message. In this case, the message is wrapped into a RuntimeError:

raise "An error" # raises a RuntimeError.new("An error")

Here's an example:

def hello(subject)
 raise ArgumentError, "`subject` is missing" if subject.to_s.empty?
 puts "Hello #{subject}"
end

hello # => ArgumentError: `subject` is missing
hello("Simone") # => "Hello Simone"

Section 22.5: Adding information to (custom) exceptions
It may be helpful to include additional information with an exception, e.g. for logging purposes or to allow
conditional handling when the exception is caught:

class CustomError < StandardError
 attr_reader :safe_to_retry

 def initialize(safe_to_retry = false, message = 'Something went wrong')
 @safe_to_retry = safe_to_retry
 super(message)
 end
end

Raising the exception:

raise CustomError.new(true)

Catching the exception and accessing the additional information provided:

begin
 # do stuff
rescue CustomError => e
 retry if e.safe_to_retry
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 91

Chapter 23: Enumerators
Parameter Details
yield Responds to yield, which is aliased as <<. Yielding to this object implements iteration.

An Enumerator is an object that implements iteration in a controlled fashion.

Instead of looping until some condition is satisfied, the object enumerates values as needed. Execution of the loop is
paused until the next value is requested by the owner of the object.

Enumerators make infinite streams of values possible.

Section 23.1: Custom enumerators
Let's create an Enumerator for Fibonacci numbers.

fibonacci = Enumerator.new do |yielder|
 a = b = 1
 loop do
 yielder << a
 a, b = b, a + b
 end
end

We can now use any Enumerable method with fibonacci:

fibonacci.take 10
=> [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Section 23.2: Existing methods
If an iteration method such as each is called without a block, an Enumerator should be returned.

This can be done using the enum_for method:

def each
 return enum_for :each unless block_given?

 yield :x
 yield :y
 yield :z
end

This enables the programmer to compose Enumerable operations:

each.drop(2).map(&:upcase).first
=> :Z

Section 23.3: Rewinding
Use rewind to restart the enumerator.

ℕ = Enumerator.new do |yielder|
 x = 0
 loop do

http://ruby-doc.org/core/Enumerator.html
http://ruby-doc.org/core/Enumerator.html
https://en.wikipedia.org/wiki/Fibonacci_number
http://ruby-doc.org/core/Enumerable.html
http://ruby-doc.org/core/Enumerator.html
http://ruby-doc.org/core/Object.html#method-i-enum_for
http://ruby-doc.org/core/Enumerable.html
http://ruby-doc.org/core-2.3.1/Enumerator.html#method-i-rewind
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 92

 yielder << x
 x += 1
 end
end

ℕ.next
=> 0

ℕ.next
=> 1

ℕ.next
=> 2

ℕ.rewind

ℕ.next
=> 0

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 93

Chapter 24: Enumerable in Ruby
Enumberable module, a set of methods are available to do traversing, sorting, searching etc across the
collection(Array, Hashes, Set, HashMap).

Section 24.1: Enumerable module
1. For Loop:
CountriesName = ["India", "Canada", "America", "Iraq"]
for country in CountriesName
 puts country
end

2. Each Iterator:
Same set of work can be done with each loop which we did with for loop.
CountriesName = ["India", "Canada", "America", "Iraq"]
CountriesName.each do |country|
 puts country
end

Each iterator, iterate over every single element of the array.
each ---------- iterator
do ------------ start of the block
|country| ----- argument passed to the block
puts country----block

3. each_with_index Iterator:
each_with_index iterator provides the element for the current iteration and index of the element in
that specific collection.
CountriesName = ["India", "Canada", "America", "Iraq"]
CountriesName.each_with_index do |country, index|
 puts country + " " + index.to_s
end

4. each_index Iterator:
Just to know the index at which the element is placed in the collection.
CountriesName = ["India", "Canada", "America", "Iraq"]
CountriesName.each_index do |index|
 puts index
end

5. map:
"map" acts as an iterator and also used to fetch the transformed copy of the array. To fetch the
new set of the array rather than introducing the change in the same specific array.
Let us deal with for loop first:
You have an array arr = [1,2,3,4,5]
You need to produce new set of array.
arr = [1,2,3,4,5]
newArr = []
for x in 0..arr.length-1
 newArr[x] = -arr[x]
end

The above mentioned array can be iterated and can produce new set of the array using map method.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 94

arr = [1,2,3,4,5]
newArr = arr.map do |x|
 -x
 end

puts arr
[1,2,3,4,5]

puts newArr
[-1, -2, -3, -4, -5]

map is returning the modified copy of the current value of the collection. arr has unaltered value.

Difference between each and map:
1. map returned the modified value of the collection.

Let us see the example:
arr = [1,2,3,4,5]
newArr = arr.map do |x|
 puts x
 -x
 end

puts newArr
[-1, -2, -3, -4, -5]

map method is the iterator and also return the copy of transformed collection.

arr = [1,2,3,4,5]
newArr = arr.each do |x|
 puts x
 -x
 end

puts newArr
[1,2,3,4,5]

each block will throw the array because this is just the iterator.
Each iteration, does not actually alter each element in the iteration.

6. map!
map with bang changes the orginal collection and returned the modified collection not the copy of
the modified collection.
arr = [1,2,3,4,5]
arr.map! do |x|
 puts x
 -x
end
puts arr
[-1, -2, -3, -4, -5]

7. Combining map and each_with_index
Here each_with_index will iterator over the collection and map will return the modified copy of the
collection.
CountriesName = ["India", "Canada", "America", "Iraq"]
newArray =
CountriesName.each_with_index.map do |value, index|
 puts "Value is #{value} and the index is #{index}"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 95

 "Value is #{value} and the index is #{index}"
end

newArray =
CountriesName.each_with_index.map do |value, index|
 if ((index%2).eql?0)
 puts "Value is #{value} and the index is #{index}"
 "Value is #{value} and the index is #{index}"
 end
end

puts newArray
 ["Value is India and the index is 0", nil, "Value is America and the index is 2", nil]

8. select
MixedArray = [1, "India", 2, "Canada", "America", 4]
MixedArray.select do |value|
 (value.class).eql?Integer
end

select method fetches the result based on satifying certain condition.

9. inject methods
inject method reduces the collection to a certain final value.
Let us say you want to find out the sum of the collection.
With for loop how would it work
arr = [1,2,3,4,5]
sum = 0
for x in 0..arr.length-1
 sum = sum + arr[0]
end
puts sum
15

So above mentioned sum can be reduce by single method
arr = [1,2,3,4,5]
arr.inject(0) do |sum, x|
 puts x
 sum = sum + x
end
inject(0) - passing initial value sum = 0
If used inject with no argument sum = arr[0]
sum - After each iteration, total is equal to the return value at the end of the block.
x - refers to the current iteration element

inject method is also an iterator.

Summary: Best way to transform the collection is to make use of Enumerable module to compact the clunky code.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 96

Chapter 25: Classes
Section 25.1: Constructor
A class can have only one constructor, that is a method called initialize. The method is automatically invoked
when a new instance of the class is created.

class Customer
 def initialize(name)
 @name = name.capitalize
 end
end

sarah = Customer.new('sarah')
sarah.name #=> 'Sarah'

Section 25.2: Creating a class
You can define a new class using the class keyword.

class MyClass
end

Once defined, you can create a new instance using the .new method

somevar = MyClass.new
=> #<MyClass:0x007fe2b8aa4a18>

Section 25.3: Access Levels
Ruby has three access levels. They are public, private and protected.

Methods that follow the private or protected keywords are defined as such. Methods that come before these are
implicitly public methods.

Public Methods

A public method should describe the behavior of the object being created. These methods can be called from
outside the scope of the created object.

class Cat
 def initialize(name)
 @name = name
 end

 def speak
 puts "I'm #{@name} and I'm 2 years old"
 end

 ...
end

new_cat = Cat.new("garfield")
#=> <Cat:0x2321868 @name="garfield">

new_cat.speak

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 97

#=> I'm garfield and I'm 2 years old

These methods are public ruby methods, they describe the behavior for initializing a new cat and the behavior of
the speak method.

public keyword is unnecessary, but can be used to escape private or protected

def MyClass
 def first_public_method
 end

 private

 def private_method
 end

 public

 def second_public_method
 end
end

Private Methods

Private methods are not accessible from outside of the object. They are used internally by the object. Using the cat
example again:

class Cat
 def initialize(name)
 @name = name
 end

 def speak
 age = calculate_cat_age # here we call the private method
 puts "I'm #{@name} and I'm #{age} years old"
 end

 private
 def calculate_cat_age
 2 * 3 - 4
 end
end

my_cat = Cat.new("Bilbo")
my_cat.speak #=> I'm Bilbo and I'm 2 years old
my_cat.calculate_cat_age #=> NoMethodError: private method `calculate_cat_age' called for
#<Cat:0x2321868 @name="Bilbo">

As you can see in the example above, the newly created Cat object has access to the calculate_cat_age method
internally. We assign the variable age to the result of running the private calculate_cat_age method which prints
the name and age of the cat to the console.

When we try and call the calculate_cat_age method from outside the my_cat object, we receive a NoMethodError
because it's private. Get it?

Protected Methods

Protected methods are very similar to private methods. They cannot be accessed outside the instance of object in

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 98

the same way private methods can't be. However, using the self ruby method, protected methods can be called
within the context of an object of the same type.

class Cat
 def initialize(name, age)
 @name = name
 @age = age
 end

 def speak
 puts "I'm #{@name} and I'm #{@age} years old"
 end

 # this == method allows us to compare two objects own ages.
 # if both Cat's have the same age they will be considered equal.
 def ==(other)
 self.own_age == other.own_age
 end

 protected
 def own_age
 self.age
 end
end

cat1 = Cat.new("ricky", 2)
=> #<Cat:0x007fe2b8aa4a18 @name="ricky", @age=2>

cat2 = Cat.new("lucy", 4)
=> #<Cat:0x008gfb7aa6v67 @name="lucy", @age=4>

cat3 = Cat.new("felix", 2)
=> #<Cat:0x009frbaa8V76 @name="felix", @age=2>

You can see we've added an age parameter to the cat class and created three new cat objects with the name and
age. We are going to call the own_age protected method to compare the age's of our cat objects.

cat1 == cat2
=> false

cat1 == cat3
=> true

Look at that, we were able to retrieve cat1's age using the self.own_age protected method and compare it against
cat2's age by calling cat2.own_age inside of cat1.

Section 25.4: Class Methods types
Classes have 3 types of methods: instance, singleton and class methods.

Instance Methods

These are methods that can be called from an instance of the class.

class Thing
 def somemethod
 puts "something"
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 99

foo = Thing.new # create an instance of the class
foo.somemethod # => something

Class Method

These are static methods, i.e, they can be invoked on the class, and not on an instantiation of that class.

class Thing
 def Thing.hello(name)
 puts "Hello, #{name}!"
 end
end

It is equivalent to use self in place of the class name. The following code is equivalent to the code above:

class Thing
 def self.hello(name)
 puts "Hello, #{name}!"
 end
end

Invoke the method by writing

Thing.hello("John Doe") # prints: "Hello, John Doe!"

Singleton Methods

These are only available to specific instances of the class, but not to all.

create an empty class
class Thing
end

two instances of the class
thing1 = Thing.new
thing2 = Thing.new

create a singleton method
def thing1.makestuff
 puts "I belong to thing one"
end

thing1.makestuff # => prints: I belong to thing one
thing2.makestuff # NoMethodError: undefined method `makestuff' for #<Thing>

Both the singleton and class methods are called eigenclasses. Basically, what ruby does is to create an
anonymous class that holds such methods so that it won't interfere with the instances that are created.

Another way of doing this is by the class << constructor. For example:

a class method (same as the above example)
class Thing
 class << self # the anonymous class
 def hello(name)
 puts "Hello, #{name}!"
 end
 end
end

Thing.hello("sarah") # => Hello, sarah!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 100

singleton method

class Thing
end

thing1 = Thing.new

class << thing1
 def makestuff
 puts "I belong to thing one"
 end
end

thing1.makestuff # => prints: "I belong to thing one"

Section 25.5: Accessing instance variables with getters and
setters
We have three methods:

attr_reader: used to allow reading the variable outside the class.1.
attr_writer: used to allow modifying the variable outside the class.2.
attr_accessor: combines both methods.3.

class Cat
 attr_reader :age # you can read the age but you can never change it
 attr_writer :name # you can change name but you are not allowed to read
 attr_accessor :breed # you can both change the breed and read it

 def initialize(name, breed)
 @name = name
 @breed = breed
 @age = 2
 end
 def speak
 puts "I'm #{@name} and I am a #{@breed} cat"
 end
end

my_cat = Cat.new("Banjo", "birman")
reading values:

my_cat.age #=> 2
my_cat.breed #=> "birman"
my_cat.name #=> Error

changing values

my_cat.age = 3 #=> Error
my_cat.breed = "sphynx"
my_cat.name = "Bilbo"

my_cat.speak #=> I'm Bilbo and I am a sphynx cat

Note that the parameters are symbols. this works by creating a method.

class Cat
 attr_accessor :breed
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 101

Is basically the same as:

class Cat
 def breed
 @breed
 end
 def breed= value
 @breed = value
 end
end

Section 25.6: New, allocate, and initialize
In many languages, new instances of a class are created using a special new keyword. In Ruby, new is also used to
create instances of a class, but it isn't a keyword; instead, it's a static/class method, no different from any other
static/class method. The definition is roughly this:

class MyClass
 def self.new(*args)
 obj = allocate
 obj.initialize(*args) # oversimplied; initialize is actually private
 obj
 end
end

allocate performs the real 'magic' of creating an uninitialized instance of the class

Note also that the return value of initialize is discarded, and obj is returned instead. This makes it immediately
clear why you can code your initialize method without worrying about returning self at the end.

The 'normal' new method that all classes get from Class works as above, but it's possible to redefine it however you
like, or to define alternatives that work differently. For example:

class MyClass
 def self.extraNew(*args)
 obj = allocate
 obj.pre_initialize(:foo)
 obj.initialize(*args)
 obj.post_initialize(:bar)
 obj
 end
end

Section 25.7: Dynamic class creation
Classes can be created dynamically through the use of Class.new.

create a new class dynamically
MyClass = Class.new

instantiate an object of type MyClass
my_class = MyClass.new

In the above example, a new class is created and assigned to the constant MyClass. This class can be instantiated
and used just like any other class.

The Class.new method accepts a Class which will become the superclass of the dynamically created class.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 102

dynamically create a class that subclasses another
Staffy = Class.new(Dog)

instantiate an object of type Staffy
lucky = Staffy.new
lucky.is_a?(Staffy) # true
lucky.is_a?(Dog) # true

The Class.new method also accepts a block. The context of the block is the newly created class. This allows
methods to be defined.

Duck =
 Class.new do
 def quack
 'Quack!!'
 end
 end

instantiate an object of type Duck
duck = Duck.new
duck.quack # 'Quack!!'

Section 25.8: Class and instance variables
There are several special variable types that a class can use for more easily sharing data.

Instance variables, preceded by @. They are useful if you want to use the same variable in different methods.

class Person
 def initialize(name, age)
 my_age = age # local variable, will be destroyed at end of constructor
 @name = name # instance variable, is only destroyed when the object is
 end

 def some_method
 puts "My name is #{@name}." # we can use @name with no problem
 end

 def another_method
 puts "My age is #{my_age}." # this will not work!
 end
end

mhmd = Person.new("Mark", 23)

mhmd.some_method #=> My name is Mark.
mhmd.another_method #=> throws an error

Class variable, preceded by @@. They contain the same values across all instances of a class.

class Person
 @@persons_created = 0 # class variable, available to all objects of this class
 def initialize(name)
 @name = name

 # modification of class variable persists across all objects of this class
 @@persons_created += 1
 end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 103

 def how_many_persons
 puts "persons created so far: #{@@persons_created}"
 end
end

mark = Person.new("Mark")
mark.how_many_persons #=> persons created so far: 1
helen = Person.new("Helen")

mark.how_many_persons #=> persons created so far: 2
helen.how_many_persons #=> persons created so far: 2
you could either ask mark or helen

Global Variables, preceded by $. These are available anywhere to the program, so make sure to use them wisely.

$total_animals = 0

class Cat
 def initialize
 $total_animals += 1
 end
end

class Dog
 def initialize
 $total_animals += 1
 end
end

bob = Cat.new()
puts $total_animals #=> 1
fred = Dog.new()
puts $total_animals #=> 2

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 104

Chapter 26: Inheritance
Section 26.1: Subclasses
Inheritance allows classes to define specific behaviour based on an existing class.

class Animal
 def say_hello
 'Meep!'
 end

 def eat
 'Yumm!'
 end
end

class Dog < Animal
 def say_hello
 'Woof!'
 end
end

spot = Dog.new
spot.say_hello # 'Woof!'
spot.eat # 'Yumm!'

In this example:

Dog Inherits from Animal, making it a Subclass.
Dog gains both the say_hello and eat methods from Animal.
Dog overrides the say_hello method with different functionality.

Section 26.2: What is inherited?
Methods are inherited

class A
 def boo; p 'boo' end
end

class B < A; end

b = B.new
b.boo # => 'boo'

Class methods are inherited

class A
 def self.boo; p 'boo' end
end

class B < A; end

p B.boo # => 'boo'

Constants are inherited

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 105

class A
 WOO = 1
end

class B < A; end

p B::WOO # => 1

But beware, they can be overridden:

class B
 WOO = WOO + 1
end

p B::WOO # => 2

Instance variables are inherited:

class A
 attr_accessor :ho
 def initialize
 @ho = 'haha'
 end
end

class B < A; end

b = B.new
p b.ho # => 'haha'

Beware, if you override the methods that initialize instance variables without calling super, they will be nil.
Continuing from above:

class C < A
 def initialize; end
 end

c = C.new
p c.ho # => nil

Class instance variables are not inherited:

class A
 @foo = 'foo'
 class << self
 attr_accessor :foo
 end
end

class B < A; end

p B.foo # => nil

The accessor is inherited, since it is a class method
#
B.foo = 'fob' # possible

Class variables aren't really inherited

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 106

They are shared between the base class and all subclasses as 1 variable:

class A
 @@foo = 0
 def initialize
 @@foo += 1
 p @@foo
 end
end

class B < A;end

a = A.new # => 1
b = B.new # => 2

So continuing from above:

class C < A
 def initialize
 @@foo = -10
 p @@foo
 end
end

a = C.new # => -10
b = B.new # => -9

Section 26.3: Multiple Inheritance
Multiple inheritance is a feature that allows one class to inherit from multiple classes(i.e., more than one parent).
Ruby does not support multiple inheritance. It only supports single-inheritance (i.e. class can have only one parent),
but you can use composition to build more complex classes using Modules.

Section 26.4: Mixins
Mixins are a beautiful way to achieve something similar to multiple inheritance. It allows us to inherit or rather
include methods defined in a module into a class. These methods can be included as either instance or class
methods. The below example depicts this design.

module SampleModule

 def self.included(base)
 base.extend ClassMethods
 end

 module ClassMethods

 def method_static
 puts "This is a static method"
 end

 end

 def insta_method
 puts "This is an instance method"
 end

end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 107

class SampleClass
 include SampleModule
end

sc = SampleClass.new

sc.insta_method

prints "This is an instance method"

sc.class.method_static

prints "This is a static method"

Section 26.5: Refactoring existing classes to use Inheritance
Let's say we have two classes, Cat and Dog.

class Cat
 def eat
 die unless has_food?
 self.food_amount -= 1
 self.hungry = false
 end
 def sound
 puts "Meow"
 end
end

class Dog
 def eat
 die unless has_food?
 self.food_amount -= 1
 self.hungry = false
 end
 def sound
 puts "Woof"
 end
end

The eat method is exactly the same in these two classes. While this works, it is hard to maintain. The problem will
get worse if there are more animals with the same eat method. Inheritance can solve this problem.

class Animal
 def eat
 die unless has_food?
 self.food_amount -= 1
 self.hungry = false
 end
 # No sound method
end

class Cat < Animal
 def sound
 puts "Meow"
 end
end

class Dog < Animal
 def sound

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 108

 puts "Woof"
 end
end

We have created a new class, Animal, and moved our eat method to that class. Then, we made Cat and Dog inherit
from this new common superclass. This removes the need for repeating code

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 109

Chapter 27: method_missing
Parameter Details

method The name of the method that has been called (in the above example this is :say_moo, note that this is a
symbol.

*args The arguments passed in to this method. Can be any number, or none

&block The block of the method called, this can either be a do block, or a { } enclosed block

Section 27.1: Catching calls to an undefined method
class Animal
 def method_missing(method, *args, &block)
 "Cannot call #{method} on Animal"
 end
end

=> Animal.new.say_moo
> "Cannot call say_moo on Animal"

Section 27.2: Use with block
class Animal
 def method_missing(method, *args, &block)
 if method.to_s == 'say'
 block.call
 else
 super
 end
 end
end

 => Animal.new.say{ 'moo' }
 => "moo"

Section 27.3: Use with parameter
class Animal
 def method_missing(method, *args, &block)
 say, speak = method.to_s.split("_")
 if say == "say" && speak
 return speak.upcase if args.first == "shout"
 speak
 else
 super
 end
 end
end

=> Animal.new.say_moo
=> "moo"
=> Animal.new.say_moo("shout")
=> "MOO"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 110

Section 27.4: Using the missing method
class Animal
 def method_missing(method, *args, &block)
 say, speak = method.to_s.split("_")
 if say == "say"
 speak
 else
 super
 end
 end
end

=> a = Animal.new
=> a.say_moo
=> "moo"
=> a.shout_moo
=> NoMethodError: undefined method `shout_moo'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 111

Chapter 28: Regular Expressions and
Regex Based Operations
Section 28.1: =~ operator
if /hay/ =~ 'haystack'
 puts "There is hay in the word haystack"
end

Note: The order is significant. Though 'haystack' =~ /hay/ is in most cases an equivalent, side effects might
differ:

Strings captured from named capture groups are assigned to local variables only when Regexp#=~ is called
(regexp =~ str);
Since the right operand might be is an arbitrary object, for regexp =~ str there will be called either
Regexp#=~ or String#=~.

Note that this does not return a true/false value, it instead returns either the index of the match if found, or nil if
not found. Because all integers in ruby are truthy (including 0) and nil is falsy, this works. If you want a boolean
value, use

#===

as shown in another example.

Section 28.2: Regular Expressions in Case Statements
You can test if a string matches several regular expressions using a switch statement.

Example
case "Ruby is #1!"
when /\APython/
 puts "Boooo."
when /\ARuby/
 puts "You are right."
else
 puts "Sorry, I didn't understand that."
end

This works because case statements are checked for equality using the === operator, not the == operator. When a
regex is on the left hand side of a comparison using ===, it will test a string to see if it matches.

Section 28.3: Groups, named and otherwise
Ruby extends the standard group syntax (...) with a named group, (?<name>...). This allows for extraction by
name instead of having to count how many groups you have.

name_reg = /h(i|ello), my name is (?<name>.*)/i #i means case insensitive

name_input = "Hi, my name is Zaphod Beeblebrox"

match_data = name_reg.match(name_input) #returns either a MatchData object or nil
match_data = name_input.match(name_reg) #works either way

http://ruby-doc.org/core-2.3.1/String.html#method-i-3D-7E
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 112

if match_data.nil? #Always check for nil! Common error.
 puts "No match"
else
 match[0] #=> "Hi, my name is Zaphod Beeblebrox"
 match[1] #=> "i" #the first group, (i|ello)
 match[2] #=> "Zaphod Beeblebrox"
 #Because it was a named group, we can get it by name
 match[:name] #=> "Zaphod Beeblebrox"
 match["name"] #=> "Zaphod Beeblebrox"
 puts "Hello #{match[:name]}!"
end

The index of the match is counted based on the order of the left parentheses (with the entire regex being the first
group at index 0)

reg = /(((a)b)c)(d)/
match = reg.match 'abcd'
match[0] #=> "abcd"
match[1] #=> "abc"
match[2] #=> "ab"
match[3] #=> "a"
match[4] #=> "d"

Section 28.4: Quantifiers
Quantifiers allows to specify count of repeated strings.

Zero or one:

/a?/

Zero or many:

/a*/

One or many:

/a+/

Exact number:

/a{2,4}/ # Two, three or four
/a{2,}/ # Two or more
/a{,4}/ # Less than four (including zero)

By default, quantifiers are greedy, which means they take as many characters as they can while still making a
match. Normally this is not noticeable:

/(?<site>.*) Stack Exchange/ =~ 'Motor Vehicle Maintenance & Repair Stack Exchange'

The named capture group site will be set to ''Motor Vehicle Maintenance & Repair' as expected. But if 'Stack
Exchange' is an optional part of the string (because it could be 'Stack Overflow' instead), the naive solution will not
work as expected:

https://ruby-doc.org/core-2.1.0/Regexp.html#class-Regexp-label-Repetition
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 113

/(?<site>.*)(Stack Exchange)?/

This version will still match, but the named capture will include 'Stack Exchange' since * greedily eats those
characters. The solution is to add another question mark to make the * lazy:

/(?<site>.*?)(Stack Exchange)?/

Appending ? to any quantifier will make it lazy.

Section 28.5: Common quick usage
Regular expressions are often used in methods as parameters to check if other strings are present or to search
and/or replace strings.

You'll often see the following:

string = "My not so long string"
string[/so/] # gives so
string[/present/] # gives nil
string[/present/].nil? # gives true

So you can simply use this as a check if a string contains a substring

puts "found" if string[/so/]

More advanced but still short and quick: search for a specific group by using the second parameter, 2 is the second
in this example because numbering starts at 1 and not 0, a group is what is enclosed in parentheses.

string[/(n.t).+(l.ng)/, 2] # gives long

Also often used: search and replace with sub or gsub, \1 gives the first found group, \2 the second:

string.gsub(/(n.t).+(l.ng)/, '\1 very \2') # My not very long string

The last result is remembered and can be used on the following lines

$2 # gives long

Section 28.6: match? - Boolean Result
Returns true or false, which indicates whether the regexp is matched or not without updating $~ and other related
variables. If the second parameter is present, it specifies the position in the string to begin the search.

/R.../.match?("Ruby") #=> true
/R.../.match?("Ruby", 1) #=> false
/P.../.match?("Ruby") #=> false

Ruby 2.4+

Section 28.7: Defining a Regexp
A Regexp can be created in three different ways in Ruby.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 114

using slashes: / /

using %r{}

using Regex.new

#The following forms are equivalent
regexp_slash = /hello/
regexp_bracket = %r{hello}
regexp_new = Regexp.new('hello')

string_to_match = "hello world!"

#All of these will return a truthy value
string_to_match =~ regexp_slash # => 0
string_to_match =~ regexp_bracket # => 0
string_to_match =~ regexp_new # => 0

Section 28.8: Character classes
Describes ranges of symbols

You can enumerate symbols explicitly

/[abc]/ # 'a' or 'b' or 'c'

Or use ranges

/[a-z]/ # from 'a' to 'z'

It is possible to combine ranges and single symbols

/[a-cz]/ # 'a' or 'b' or 'c' or 'z'

Leading dash (-) is treated as character

/[-a-c]/ # '-' or 'a' or 'b' or 'c'

Classes can be negative when preceding symbols with ^

/[^a-c]/ # Not 'a', 'b' or 'c'

There are some shortcuts for widespread classes and special characters, plus line endings

^ # Start of line
$ # End of line
\A # Start of string
\Z # End of string, excluding any new line at the end of string
\z # End of string
. # Any single character
\s # Any whitespace character
\S # Any non-whitespace character
\d # Any digit
\D # Any non-digit
\w # Any word character (letter, number, underscore)
\W # Any non-word character

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 115

\b # Any word boundary

\n will be understood simply as new line

To escape any reserved character, such as / or [] and others use backslash (left slash)

\\ # => \
\[\] # => []

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 116

Chapter 29: File and I/O Operations
Flag Meaning
"r" Read-only, starts at beginning of file (default mode).

"r+" Read-write, starts at beginning of file.

"w" Write-only, truncates existing file to zero length or creates a new file for writing.

"w+" Read-write, truncates existing file to zero length or creates a new file for reading and writing.

"a" Write-only, starts at end of file if file exists, otherwise creates a new file for writing.

"a+" Read-write, starts at end of file if file exists, otherwise creates a new file for reading and writing.

"b"
Binary file mode. Suppresses EOL <-> CRLF conversion on Windows. And sets external encoding to ASCII-8BIT
unless explicitly specified. (This flag may only appear in conjunction with the above flags. For example,
File.new("test.txt", "rb") would open test.txt in read-only mode as a binary file.)

"t" Text file mode. (This flag may only appear in conjunction with the above flags. For example,
File.new("test.txt", "wt") would open test.txt in write-only mode as a text file.)

Section 29.1: Writing a string to a file
A string can be written to a file with an instance of the File class.

file = File.new('tmp.txt', 'w')
file.write("NaNaNaNa\n")
file.write('Batman!\n')
file.close

The File class also offers a shorthand for the new and close operations with the open method.

File.open('tmp.txt', 'w') do |f|
 f.write("NaNaNaNa\n")
 f.write('Batman!\n')
end

For simple write operations, a string can be also written directly to a file with File.write. Note that this will
overwrite the file by default.

File.write('tmp.txt', "NaNaNaNa\n" * 4 + 'Batman!\n')

To specify a different mode on File.write, pass it as the value of a key called mode in a hash as another parameter.

File.write('tmp.txt', "NaNaNaNa\n" * 4 + 'Batman!\n', { mode: 'a'})

Section 29.2: Reading from STDIN
Get two numbers from STDIN, separated by a newline, and output the result
number1 = gets
number2 = gets
puts number1.to_i + number2.to_i
run with: $ ruby a_plus_b.rb
or: $ echo -e "1\n2" | ruby a_plus_b.rb

Section 29.3: Reading from arguments with ARGV
number1 = ARGV[0]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 117

number2 = ARGV[1]
puts number1.to_i + number2.to_i
run with: $ ruby a_plus_b.rb 1 2

Section 29.4: Open and closing a file
Manually open and close a file.

Using new method
f = File.new("test.txt", "r") # reading
f = File.new("test.txt", "w") # writing
f = File.new("test.txt", "a") # appending

Using open method
f = open("test.txt", "r")

Remember to close files
f.close

Automatically close a file using a block.

f = File.open("test.txt", "r") do |f|
 # do something with file f
 puts f.read # for example, read it
end

Section 29.5: get a single char of input
Unlike gets.chomp this will not wait for a newline.

First part of the stdlib must be included

require 'io/console'

Then a helper method can be written:

def get_char
 input = STDIN.getch
 control_c_code = "\u0003"
 exit(1) if input == control_c_code
 input
end

Its' imporant to exit if control+c is pressed.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 118

Chapter 30: Ruby Access Modifiers
Access control(scope) to various methods, data members, initialize methods.

Section 30.1: Instance Variables and Class Variables
Let's first brush up with what are the Instance Variables: They behave more like properties for an object. They are
initialized on an object creation. Instance variables are accessible through instance methods. Per Object has per
instance variables. Instance Variables are not shared between objects.

Sequence class has @from, @to and @by as the instance variables.

class Sequence
 include Enumerable

 def initialize(from, to, by)
 @from = from
 @to = to
 @by = by
 end

 def each
 x = @from
 while x < @to
 yield x
 x = x + @by
 end
 end

 def *(factor)
 Sequence.new(@from*factor, @to*factor, @by*factor)
 end

 def +(offset)
 Sequence.new(@from+offset, @to+offset, @by+offset)
 end
end

object = Sequence.new(1,10,2)
object.each do |x|
 puts x
end

Output:
1
3
5
7
9

object1 = Sequence.new(1,10,3)
object1.each do |x|
 puts x
end

Output:
1
4

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 119

7

Class Variables Treat class variable same as static variables of java, which are shared among the various objects of
that class. Class Variables are stored in heap memory.

class Sequence
 include Enumerable
 @@count = 0
 def initialize(from, to, by)
 @from = from
 @to = to
 @by = by
 @@count = @@count + 1
 end

 def each
 x = @from
 while x < @to
 yield x
 x = x + @by
 end
 end

 def *(factor)
 Sequence.new(@from*factor, @to*factor, @by*factor)
 end

 def +(offset)
 Sequence.new(@from+offset, @to+offset, @by+offset)
 end

 def getCount
 @@count
 end
end

object = Sequence.new(1,10,2)
object.each do |x|
 puts x
end

Output:
1
3
5
7
9

object1 = Sequence.new(1,10,3)
object1.each do |x|
 puts x
end

Output:
1
4
7

puts object1.getCount
Output: 2

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 120

Shared among object and object1.

Comparing the instance and class variables of Ruby against Java:

Class Sequence{
 int from, to, by;
 Sequence(from, to, by){// constructor method of Java is equivalent to initialize method of ruby
 this.from = from;// this.from of java is equivalent to @from indicating currentObject.from
 this.to = to;
 this.by = by;
 }
 public void each(){
 int x = this.from;//objects attributes are accessible in the context of the object.
 while x > this.to
 x = x + this.by
 }
}

Section 30.2: Access Controls
Comparison of access controls of Java against Ruby: If method is declared private in Java, it can only be accessed
by other methods within the same class. If a method is declared protected it can be accessed by other classes
which exist within the same package as well as by subclasses of the class in a different package. When a method is
public it is visible to everyone. In Java, access control visibility concept depends on where these classes lie's in the
inheritance/package hierarchy.

Whereas in Ruby, the inheritance hierarchy or the package/module don't fit. It's all about which object is
the receiver of a method.

For a private method in Ruby, it can never be called with an explicit receiver. We can (only) call the private method
with an implicit receiver.

This also means we can call a private method from within a class it is declared in as well as all subclasses of this
class.

class Test1
 def main_method
 method_private
 end

 private
 def method_private
 puts "Inside methodPrivate for #{self.class}"
 end
end

class Test2 < Test1
 def main_method
 method_private
 end
end

Test1.new.main_method
Test2.new.main_method

Inside methodPrivate for Test1
Inside methodPrivate for Test2

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 121

class Test3 < Test1
 def main_method
 self.method_private #We were trying to call a private method with an explicit receiver and if
called in the same class with self would fail.
 end
end

Test1.new.main_method
This will throw NoMethodError

You can never call the private method from outside the class hierarchy where it was defined.

Protected method can be called with an implicit receiver, as like private. In addition protected method can also be
called by an explicit receiver (only) if the receiver is "self" or "an object of the same class".

class Test1
 def main_method
 method_protected
 end

 protected
 def method_protected
 puts "InSide method_protected for #{self.class}"
 end
end

class Test2 < Test1
 def main_method
 method_protected # called by implicit receiver
 end
end

class Test3 < Test1
 def main_method
 self.method_protected # called by explicit receiver "an object of the same class"
 end
end

InSide method_protected for Test1
InSide method_protected for Test2
InSide method_protected for Test3

class Test4 < Test1
 def main_method
 Test2.new.method_protected # "Test2.new is the same type of object as self"
 end
end

Test4.new.main_method

class Test5
 def main_method
 Test2.new.method_protected
 end
end

Test5.new.main_method
This would fail as object Test5 is not subclass of Test1

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 122

Consider Public methods with maximum visibility

Summary

Public: Public methods have maximum visibility1.

Protected: Protected method can be called with an implicit receiver, as like private. In addition protected2.
method can also be called by an explicit receiver (only) if the receiver is "self" or "an object of the same class".

Private: For a private method in Ruby, it can never be called with an explicit receiver. We can (only) call the3.
private method with an implicit receiver. This also means we can call a private method from within a class it
is declared in as well as all subclasses of this class.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 123

Chapter 31: Design Patterns and Idioms in
Ruby
Section 31.1: Decorator Pattern
Decorator pattern adds behavior to objects without affecting other objects of the same class. The decorator pattern
is a useful alternative to creating sub-classes.

Create a module for each decorator. This approach is more flexible than inheritance because you can mix and
match responsibilities in more combinations. Additionally, because the transparency allows decorators to be
nested recursively, it allows for an unlimited number of responsibilities.

Assume the Pizza class has a cost method that returns 300:

class Pizza
 def cost
 300
 end
end

Represent pizza with an added layer of cheese burst and the cost goes up by 50. The simplest approach is to create
a PizzaWithCheese subclass that returns 350 in the cost method.

class PizzaWithCheese < Pizza
 def cost
 350
 end
end

Next, we need to represent a large pizza that adds 100 to the cost of a normal pizza. We can represent this using a
LargePizza subclass of Pizza.

class LargePizza < Pizza
 def cost
 400
 end
end

We could also have an ExtraLargePizza which adds a further cost of 15 to our LargePizza. If we were to consider
that these pizza types could be served with cheese, we would need to add LargePizzaWithChese and
ExtraLargePizzaWithCheese subclasses.we end up with a total of 6 classes.

To simplify the approach, use modules to dynamically add behavior to Pizza class:

Module + extend + super decorator:->

class Pizza
 def cost
 300
 end
end

module CheesePizza
 def cost
 super + 50

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 124

 end
end

module LargePizza
 def cost
 super + 100
 end
end

pizza = Pizza.new #=> cost = 300
pizza.extend(CheesePizza) #=> cost = 350
pizza.extend(LargePizza) #=> cost = 450
pizza.cost #=> cost = 450

Section 31.2: Observer
The observer pattern is a software design pattern in which an object (called subject) maintains a list of its
dependents (called observers), and notifies them automatically of any state changes, usually by calling one of their
methods.

Ruby provides a simple mechanism to implement the Observer design pattern. The module Observable provides
the logic to notify the subscriber of any changes in the Observable object.

For this to work, the observable has to assert it has changed and notify the observers.

Objects observing have to implement an update() method, which will be the callback for the Observer.

Let's implement a small chat, where users can subscribe to users and when one of them write something, the
subscribers get notified.

require "observer"

class Moderator
 include Observable

 def initialize(name)
 @name = name
 end

 def write
 message = "Computer says: No"
 changed
 notify_observers(message)
 end
end

class Warner
 def initialize(moderator, limit)
 @limit = limit
 moderator.add_observer(self)
 end
end

class Subscriber < Warner
 def update(message)
 puts "#{message}"
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 125

moderator = Moderator.new("Rupert")
Subscriber.new(moderator, 1)
moderator.write
moderator.write

Producing the following output:

Computer says: No
Computer says: No

We've triggered the method write at the Moderator class twice, notifying its subscribers, in this case just one.

The more subscribers we add the more the changes will propagate.

Section 31.3: Singleton
Ruby Standard Library has a Singleton module which implements the Singleton pattern. The first step in creating a
Singleton class is to require and include the Singleton module in a class:

require 'singleton'

class Logger
 include Singleton
end

If you try to instantiate this class as you normally would a regular class, a NoMethodError exception is raised. The
constructor is made private to prevent other instances from being accidentally created:

Logger.new

#=> NoMethodError: private method `new' called for AppConfig:Class

To access the instance of this class, we need to use the instance():

first, second = Logger.instance, Logger.instance
first == second

#=> true

Logger example

require 'singleton'

class Logger
 include Singleton

 def initialize
 @log = File.open("log.txt", "a")
 end

 def log(msg)
 @log.puts(msg)
 end
end

In order to use Logger object:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 126

Logger.instance.log('message 2')

Without Singleton include

The above singleton implementations can also be done without the inclusion of the Singleton module. This can be
achieved with the following:

class Logger
 def self.instance
 @instance ||= new
 end
end

which is a shorthand notation for the following:

class Logger
 def self.instance
 @instance = @instance || Logger.new
 end
end

However, keep in mind that the Singleton module is tested and optimized, therefore being the better option to
implement your singleton with.

Section 31.4: Proxy
Proxy object is often used to ensure guarded access to another object, which internal business logic we don't want
to pollute with safety requirements.

Suppose we'd like to guarantee that only user of specific permissions can access resource.

Proxy definition: (it ensure that only users which actually can see reservations will be able to consumer
reservation_service)

class Proxy
 def initialize(current_user, reservation_service)
 @current_user = current_user
 @reservation_service = reservation_service
 end

 def highest_total_price_reservations(date_from, date_to, reservations_count)
 if @current_user.can_see_reservations?
 @reservation_service.highest_total_price_reservations(
 date_from,
 date_to,
 reservations_count
)
 else
 []
 end
 end
end

Models and ReservationService:

class Reservation
 attr_reader :total_price, :date

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 127

 def initialize(date, total_price)
 @date = date
 @total_price = total_price
 end
end

class ReservationService
 def highest_total_price_reservations(date_from, date_to, reservations_count)
 # normally it would be read from database/external service
 reservations = [
 Reservation.new(Date.new(2014, 5, 15), 100),
 Reservation.new(Date.new(2017, 5, 15), 10),
 Reservation.new(Date.new(2017, 1, 15), 50)
]

 filtered_reservations = reservations.select do |reservation|
 reservation.date.between?(date_from, date_to)
 end

 filtered_reservations.take(reservations_count)
 end
end

class User
 attr_reader :name

 def initialize(can_see_reservations, name)
 @can_see_reservations = can_see_reservations
 @name = name
 end

 def can_see_reservations?
 @can_see_reservations
 end
end

Consumer service:

class StatsService
 def initialize(reservation_service)
 @reservation_service = reservation_service
 end

 def year_top_100_reservations_average_total_price(year)
 reservations = @reservation_service.highest_total_price_reservations(
 Date.new(year, 1, 1),
 Date.new(year, 12, 31),
 100
)

 if reservations.length > 0
 sum = reservations.reduce(0) do |memo, reservation|
 memo + reservation.total_price
 end

 sum / reservations.length
 else
 0
 end
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 128

Test:

def test(user, year)
 reservations_service = Proxy.new(user, ReservationService.new)
 stats_service = StatsService.new(reservations_service)
 average_price = stats_service.year_top_100_reservations_average_total_price(year)
 puts "#{user.name} will see: #{average_price}"
end

test(User.new(true, "John the Admin"), 2017)
test(User.new(false, "Guest"), 2017)

BENEFITS

we're avoiding any changes in ReservationService when access restrictions are changed.
we're not mixing business related data (date_from, date_to, reservations_count) with domain
unrelated concepts (user permissions) in service.
Consumer (StatsService) is free from permissions related logic as well

CAVEATS

Proxy interface is always exactly the same as the object it hides, so that user that consumes service wrapped
by proxy wasn't even aware of proxy presence.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 129

Chapter 32: Loading Source Files
Section 32.1: Require files to be loaded only once
The Kernel#require method will load files only once (several calls to require will result in the code in that file being
evaluated only once). It will search your ruby $LOAD_PATH to find the required file if the parameter is not an absolute
path. Extensions like .rb, .so, .o or .dll are optional. Relative paths will be resolved to the current working
directory of the process.

require 'awesome_print'

The Kernel#require_relative allows you to load files relative to the file in which require_relative is called.

will search in directory myproj relative to current source file.
#
require_relative 'myproj/version'

Section 32.2: Automatically loading source files
The method Kernel#autoload registers filename to be loaded (using Kernel::require) the first time that module
(which may be a String or a symbol) is accessed.

autoload :MyModule, '/usr/local/lib/modules/my_module.rb'

The method Kernel#autoload? returns filename to be loaded if name is registered as autoload.

autoload? :MyModule #=> '/usr/local/lib/modules/my_module.rb'

Section 32.3: Loading optional files
When files are not available, the require family will throw a LoadError. This is an example which illustrates loading
optional modules only if they exist.

module TidBits

@@unavailableModules = []

[
 { name: 'CoreExtend', file: 'core_extend/lib/core_extend' } \
 , { name: 'Fs' , file: 'fs/lib/fs' } \
 , { name: 'Options' , file: 'options/lib/options' } \
 , { name: 'Susu' , file: 'susu/lib/susu' } \

].each do |lib|

 begin

 require_relative lib[:file]

 rescue LoadError

 @@unavailableModules.push lib

 end

http://www.rubydoc.info/stdlib/core/Kernel%3Arequire
http://www.rubydoc.info/stdlib/core/Kernel%3Arequire_relative
http://www.rubydoc.info/stdlib/core/Kernel%3Aautoload
http://www.rubydoc.info/stdlib/core/Kernel%3Aautoload
http://www.rubydoc.info/stdlib/core/Kernel%3Aautoload%253F
http://www.rubydoc.info/stdlib/core/LoadError
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 130

end

end # module TidBits

Section 32.4: Loading files repeatedly
The Kernel#load method will evaluate the code in the given file. The search path will be constructed as with
require. It will re-evaluate that code on every subsequent call unlike require. There is no load_relative.

load `somefile`

Section 32.5: Loading several files
You can use any ruby technique to dynamically create a list of files to load. Illustration of globbing for files starting
with test, loaded in alphabetical order.

Dir["#{ __dir__ }**/test*.rb")].sort.each do |source|

 require_relative source

end

http://www.rubydoc.info/stdlib/core/Kernel%3Aload
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 131

Chapter 33: Thread
Section 33.1: Accessing shared resources
Use a mutex to synchronise access to a variable which is accessed from multiple threads:

counter = 0
counter_mutex = Mutex.new

Start three parallel threads and increment counter
3.times.map do |index|
 Thread.new do
 counter_mutex.synchronize { counter += 1 }
 end
end.each(&:join) # Wait for all threads to finish before killing the process

Otherwise, the value of counter currently visible to one thread could be changed by another thread.

Example without Mutex (see e.g. Thread 0, where Before and After differ by more than 1):

2.2.0 :224 > counter = 0; 3.times.map { |i| Thread.new { puts "[Thread #{i}] Before: #{counter}";
counter += 1; puts "[Thread #{i}] After: #{counter}"; } }.each(&:join)
[Thread 2] Before: 0
[Thread 0] Before: 0
[Thread 0] After: 2
[Thread 1] Before: 0
[Thread 1] After: 3
[Thread 2] After: 1

Example with Mutex:

2.2.0 :226 > mutex = Mutex.new; counter = 0; 3.times.map { |i| Thread.new { mutex.synchronize {
puts "[Thread #{i}] Before: #{counter}"; counter += 1; puts "[Thread #{i}] After: #{counter}"; } }
}.each(&:join)
[Thread 2] Before: 0
[Thread 2] After: 1
[Thread 1] Before: 1
[Thread 1] After: 2
[Thread 0] Before: 2
[Thread 0] After: 3

Section 33.2: Basic Thread Semantics
A new thread separate from the main thread's execution, can be created using Thread.new.

thr = Thread.new {
 sleep 1 # 1 second sleep of sub thread
 puts "Whats the big deal"
}

This will automatically start the execution of the new thread.

To freeze execution of the main Thread, until the new thread stops, use join:

thr.join #=> ... "Whats the big deal"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 132

Note that the Thread may have already finished when you call join, in which case execution will continue normally.
If a sub-thread is never joined, and the main thread completes, the sub-thread will not execute any remaining code.

Section 33.3: Terminating a Thread
A thread terminates if it reaches the end of its code block. The best way to terminate a thread early is to convince it
to reach the end of its code block. This way, the thread can run cleanup code before dying.

This thread runs a loop while the instance variable continue is true. Set this variable to false, and the thread will die
a natural death:

require 'thread'

class CounterThread < Thread
 def initialize
 @count = 0
 @continue = true

 super do
 @count += 1 while @continue
 puts "I counted up to #{@count} before I was cruelly stopped."
 end
 end

 def stop
 @continue = false
 end
end

counter = CounterThread.new
sleep 2
counter.stop

Section 33.4: How to kill a thread
You call use Thread.kill or Thread.terminate:

thr = Thread.new { ... }
Thread.kill(thr)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 133

Chapter 34: Range
Section 34.1: Ranges as Sequences
The most important use of ranges is to express a sequence

Syntax:

(begin..end) => this construct will include end value
(begin...end) => this construct will exclude end value

or

Range.new(begin,end,exclude_end) => exclude_end is by default false

Most important end value must be greater the begin, otherwise it will return nothing.

Examples:

(10..1).to_a #=> []
(1...3) #=> [1, 2]
(-6..-1).to_a #=> [-6, -5, -4, -3, -2, -1]
('a'..'e').to_a #=> ["a", "b", "c", "d", "e"]
('a'...'e').to_a #=> ["a", "b", "c", "d"]
Range.new(1,3).to_a #=> [1, 2, 3]
Range.new(1,3,true).to_a#=> [1, 2]

Section 34.2: Iterating over a range
You can easily do something to each element in a range.

(1..5).each do |i|
 print i
end
12345

Section 34.3: Range between dates
require 'date'

date1 = Date.parse "01/06/2016"
date2 = Date.parse "05/06/2016"

p "Period #{date1.strftime("%d/%m/%Y")} to #{date2.strftime("%d/%m/%Y")}"

(date1..date2).each do |date|
 p date.strftime("%d/%m/%Y")
end

"01/06/2016"
"02/06/2016"
"03/06/2016"
"04/06/2016"
"05/06/2016"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 134

Chapter 35: Modules
Section 35.1: A simple mixin with include
module SomeMixin
 def foo
 puts "foo!"
 end
end

class Bar
 include SomeMixin
 def baz
 puts "baz!"
 end
end

b = Bar.new
b.baz # => "baz!"
b.foo # => "foo!"
works thanks to the mixin

Now Bar is a mix of its own methods and the methods from SomeMixin.

Note that how a mixin is used in a class depends on how it is added:

the include keyword evaluates the module code in the class context (eg. method definitions will be methods
on instances of the class),
extend will evaluate the module code in the context of the singleton class of the object (methods are
available directly on the extended object).

Section 35.2: Modules and Class Composition
You can use Modules to build more complex classes through composition. The include ModuleName directive
incorporates a module's methods into a class.

module Foo
 def foo_method
 puts 'foo_method called!'
 end
end

module Bar
 def bar_method
 puts 'bar_method called!'
 end
end

class Baz
 include Foo
 include Bar

 def baz_method
 puts 'baz_method called!'
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 135

Baz now contains methods from both Foo and Bar in addition to its own methods.

new_baz = Baz.new
new_baz.baz_method #=> 'baz_method called!'
new_baz.bar_method #=> 'bar_method called!'
new_baz.foo_method #=> 'foo_method called!'

Section 35.3: Module as Namespace
Modules can contain other modules and classes:

module Namespace

 module Child

 class Foo; end

 end # module Child

 # Foo can now be accessed as:
 #
 Child::Foo

end # module Namespace

Foo must now be accessed as:
#
Namespace::Child::Foo

Section 35.4: A simple mixin with extend
A mixin is just a module that can be added (mixed in) to a class. one way to do it is with the extend method. The
extend method adds methods of the mixin as class methods.

module SomeMixin
 def foo
 puts "foo!"
 end
end

class Bar
 extend SomeMixin
 def baz
 puts "baz!"
 end
end

b = Bar.new
b.baz # => "baz!"
b.foo # NoMethodError, as the method was NOT added to the instance
Bar.foo # => "foo!"
works only on the class itself

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 136

Chapter 36: Introspection in Ruby
What is introspection?

Introspection is looking inward to know about the inside. That is a simple definition of introspection.

In programming and Ruby in general…introspection is the ability to look at object, class… at run time to know
about that one.

Section 36.1: Introspection of class
Lets following are the class definition

class A def a; end end module B def b; end end class C < A include B def c; end end

What are the instance methods of C?

C.instance_methods # [:c, :b, :a, :to_json, :instance_of?...]

What are the instance methods that declare only on C?

C.instance_methods(false) # [:c]

What are the ancestors of class C?

C.ancestors # [C, B, A, Object,...]

Superclass of C?

C.superclass # A

Section 36.2: Lets see some examples
Example:

s = "Hello" # s is a string

Then we find out something about s. Lets begin:

So you want to know what is the class of s at run time?

irb(main):055:0* s.class
=> String

Ohh, good. But what are the methods of s?

irb(main):002:0> s.methods
=> [:unicode_normalize, :include?, :to_c, :unicode_normalize!, :unicode_normalized?, :%, :*, :+,
:count, :partition, :unpack, :encode, :encode!, :next, :casecmp, :insert, :bytesize, :match,
:succ!, :next!, :upto, :index, :rindex, :replace, :clear, :chr, :+@, :-@, :setbyte, :getbyte, :<=>,
:<<, :scrub, :scrub!, :byteslice, :==, :===, :dump, :=~, :downcase, :[], :[]=, :upcase, :downcase!,
:capitalize, :swapcase, :upcase!, :oct, :empty?, :eql?, :hex, :chars, :split, :capitalize!,
:swapcase!, :concat, :codepoints, :reverse, :lines, :bytes, :prepend, :scan, :ord, :reverse!,
:center, :sub, :freeze, :inspect, :intern, :end_with?, :gsub, :chop, :crypt, :gsub!, :start_with?,
:rstrip, :sub!, :ljust, :length, :size, :strip!, :succ, :rstrip!, :chomp, :strip, :rjust, :lstrip!,
:tr!, :chomp!, :squeeze, :lstrip, :tr_s!, :to_str, :to_sym, :chop!, :each_byte, :each_char,
:each_codepoint, :to_s, :to_i, :tr_s, :delete, :encoding, :force_encoding, :sum, :delete!,

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 137

:squeeze!, :tr, :to_f, :valid_encoding?, :slice, :slice!, :rpartition, :each_line, :b,
:ascii_only?, :hash, :to_r, :<, :>, :<=, :>=, :between?, :instance_of?, :public_send,
:instance_variable_get, :instance_variable_set, :instance_variable_defined?,
:remove_instance_variable, :private_methods, :kind_of?, :instance_variables, :tap, :is_a?, :extend,
:to_enum, :enum_for, :!~, :respond_to?, :display, :object_id, :send, :method, :public_method,
:singleton_method, :define_singleton_method, :nil?, :class, :singleton_class, :clone, :dup,
:itself, :taint, :tainted?, :untaint, :untrust, :trust, :untrusted?, :methods, :protected_methods,
:frozen?, :public_methods, :singleton_methods, :!, :!=, :__send__, :equal?, :instance_eval,
:instance_exec, :__id__]

You want to know if s is an instance of String?

irb(main):017:0*
irb(main):018:0* s.instance_of?(String)
=> true

What are the public methods of s?

irb(main):026:0* s.public_methods
=> [:unicode_normalize, :include?, :to_c, :unicode_normalize!, :unicode_normalized?, :%, :*, :+,
:count, :partition, :unpack, :encode, :encode!, :next, :casecmp, :insert, :bytesize, :match,
:succ!, :next!, :upto, :index, :rindex, :replace, :clear, :chr, :+@, :-@, :setbyte, :getbyte, :<=>,
:<<, :scrub, :scrub!, :byteslice, :==, :===, :dump, :=~, :downcase, :[], :[]=, :upcase, :downcase!,
:capitalize, :swapcase, :upcase!, :oct, :empty?, :eql?, :hex, :chars, :split, :capitalize!,
:swapcase!, :concat, :codepoints, :reverse, :lines, :bytes, :prepend, :scan, :ord, :reverse!,
:center, :sub, :freeze, :inspect, :intern, :end_with?, :gsub, :chop, :crypt, :gsub!, :start_with?,
:rstrip, :sub!, :ljust, :length, :size, :strip!, :succ, :rstrip!, :chomp, :strip, :rjust, :lstrip!,
:tr!, :chomp!, :squeeze, :lstrip, :tr_s!, :to_str, :to_sym, :chop!, :each_byte, :each_char,
:each_codepoint, :to_s, :to_i, :tr_s, :delete, :encoding, :force_encoding, :sum, :delete!,
:squeeze!, :tr, :to_f, :valid_encoding?, :slice, :slice!, :rpartition, :each_line, :b,
:ascii_only?, :hash, :to_r, :<, :>, :<=, :>=, :between?, :pretty_print, :pretty_print_cycle,
:pretty_print_instance_variables, :pretty_print_inspect, :instance_of?, :public_send,
:instance_variable_get, :instance_variable_set, :instance_variable_defined?,
:remove_instance_variable, :private_methods, :kind_of?, :instance_variables, :tap, :pretty_inspect,
:is_a?, :extend, :to_enum, :enum_for, :!~, :respond_to?, :display, :object_id, :send, :method,
:public_method, :singleton_method, :define_singleton_method, :nil?, :class, :singleton_class,
:clone, :dup, :itself, :taint, :tainted?, :untaint, :untrust, :trust, :untrusted?, :methods,
:protected_methods, :frozen?, :public_methods, :singleton_methods, :!, :!=, :__send__, :equal?,
:instance_eval, :instance_exec, :__id__]

and private methods....

irb(main):030:0* s.private_methods
=> [:initialize, :initialize_copy, :DelegateClass, :default_src_encoding, :irb_binding, :sprintf,
:format, :Integer, :Float, :String, :Array, :Hash, :catch, :throw, :loop, :block_given?, :Complex,
:set_trace_func, :trace_var, :untrace_var, :at_exit, :Rational, :caller, :caller_locations,
:select, :test, :fork, :exit, :`, :gem_original_require, :sleep, :pp, :respond_to_missing?, :load,
:exec, :exit!, :system, :spawn, :abort, :syscall, :printf, :open, :putc, :print, :readline, :puts,
:p, :srand, :readlines, :gets, :rand, :proc, :lambda, :trap, :initialize_clone, :initialize_dup,
:gem, :require, :require_relative, :autoload, :autoload?, :binding, :local_variables, :warn,
:raise, :fail, :global_variables, :__method__, :__callee__, :__dir__, :eval, :iterator?,
:method_missing, :singleton_method_added, :singleton_method_removed, :singleton_method_undefined]

Yes, do s have a method name upper. You want to get the upper case version of s? Lets try:

irb(main):044:0> s.respond_to?(:upper)
=> false

Look like not, the correct method is upcase lets check:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 138

irb(main):047:0*
irb(main):048:0* s.respond_to?(:upcase)
=> true

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 139

Chapter 37: Monkey Patching in Ruby
Monkey Patching is a way of modifying and extending classes in Ruby. Basically, you can modify already defined
classes in Ruby, adding new methods and even modifying previously defined methods.

Section 37.1: Changing an existing ruby method
puts "Hello readers".reverse # => "sredaer olleH"

class String
 def reverse
 "Hell riders"
 end
end

puts "Hello readers".reverse # => "Hell riders"

Section 37.2: Monkey patching a class
Monkey patching is the modification of classes or objects outside of the class itself.

Sometimes it is useful to add custom functionality.

Example: Override String Class to provide parsing to boolean

class String
 def to_b
 self =~ (/^(true|TRUE|True|1)$/i) ? true : false
 end
end

As you can see, we add the to_b() method to the String class, so we can parse any string to a boolean value.

>>'true'.to_b
=> true
>>'foo bar'.to_b
=> false

Section 37.3: Monkey patching an object
Like patching of classes, you can also patch single objects. The difference is that only that one instance can use the
new method.

Example: Override a string object to provide parsing to boolean

s = 'true'
t = 'false'

def s.to_b
 self =~ /true/ ? true : false
end

>> s.to_b
=> true
>> t.to_b
=> undefined method `to_b' for "false":String (NoMethodError)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 140

Section 37.4: Safe Monkey patching with Refinements
Since Ruby 2.0, Ruby allows to have safer Monkey Patching with refinements. Basically it allows to limit the Monkey
Patched code to only apply when it is requested.

First we create a refinement in a module:

module RefiningString
 refine String do
 def reverse
 "Hell riders"
 end
 end
end

Then we can decide where to use it:

class AClassWithoutMP
 def initialize(str)
 @str = str
 end

 def reverse
 @str.reverse
 end
end

class AClassWithMP
 using RefiningString

 def initialize(str)
 @str = str
 end

 def reverse
 str.reverse
 end
end

AClassWithoutMP.new("hello".reverse # => "olle"
AClassWithMP.new("hello").reverse # "Hell riders"

Section 37.5: Changing a method with parameters
You can access the exact same context as the method you override.

class Boat
 def initialize(name)
 @name = name
 end

 def name
 @name
 end
end

puts Boat.new("Doat").name # => "Doat"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 141

class Boat
 def name
 "� #{@name} �"
 end
end

puts Boat.new("Moat").name # => "� Moat �"

Section 37.6: Adding Functionality
You can add a method to any class in Ruby, whether it's a builtin or not. The calling object is referenced using self.

class Fixnum
 def plus_one
 self + 1
 end

 def plus(num)
 self + num
 end

 def concat_one
 self.to_s + '1'
 end
end

1.plus_one # => 2
3.plus(5) # => 8
6.concat_one # => '61'

Section 37.7: Changing any method
def hello
 puts "Hello readers"
end

hello # => "Hello readers"

def hello
 puts "Hell riders"
end

hello # => "Hell riders"

Section 37.8: Extending an existing class
class String
 def fancy
 "~~~{#{self}}~~~"
 end
end

puts "Dorian".fancy # => "~~~{Dorian}~~~"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 142

Chapter 38: Recursion in Ruby
Section 38.1: Tail recursion
Many recursive algorithms can be expressed using iteration. For instance, the greatest common denominator
function can be written recursively:

def gdc (x, y)
 return x if y == 0
 return gdc(y, x%y)
end

or iteratively:

def gdc_iter (x, y)
 while y != 0 do
 x, y = y, x%y
 end

 return x
end

The two algorithms are equivalent in theory, but the recursive version risks a SystemStackError. However, since the
recursive method ends with a call to itself, it could be optimized to avoid a stack overflow. Another way to put it: the
recursive algorithm can result in the same machine code as the iterative if the compiler knows to look for the
recursive method call at the end of the method. Ruby doesn't do tail call optimization by default, but you can turn it
on with:

RubyVM::InstructionSequence.compile_option = {
 tailcall_optimization: true,
 trace_instruction: false
}

In addition to turning on tail-call optimization, you also need to turn off instruction tracing. Unfortunately, these
options only apply at compile time, so you either need to require the recursive method from another file or eval
the method definition:

RubyVM::InstructionSequence.new(<<-EOF).eval
 def me_myself_and_i
 me_myself_and_i
 end
EOF
me_myself_and_i # Infinite loop, not stack overflow

Finally, the final return call must return the method and only the method. That means you'll need to re-write the
standard factorial function:

def fact(x)
 return 1 if x <= 1
 return x*fact(x-1)
end

To something like:

 def fact(x, acc=1)

https://en.wikipedia.org/wiki/Recursion_(computer_science)#Recursive_procedures
https://ruby-doc.org/core/SystemStackError.html
https://ruby-doc.org/core/RubyVM/InstructionSequence.html#method-c-compile_option
https://ruby-doc.org/core/RubyVM/InstructionSequence.html#method-c-compile_option
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 143

 return acc if x <= 1
 return fact(x-1, x*acc)
 end

This version passes the accumulated sum via a second (optional) argument that defaults to 1.

Further reading: Tail Call Optimization in Ruby and Tailin' Ruby.

Section 38.2: Recursive function
Let's start with a simple algorithm to see how recursion could be implemented in Ruby.

A bakery has products to sell. Products are in packs. It services orders in packs only. Packaging starts from the
largest pack size and then the remaining quantities are filled by next pack sizes available.

For e.g. If an order of 16 is received, bakery allocates 2 from 5 pack and 2 from 3 pack. 25+23 = 16. Let's see how
this is implemented in recursion. "allocate" is the recursive function here.

#!/usr/bin/ruby

class Bakery
 attr_accessor :selected_packs

 def initialize
 @packs = [5,3] # pack sizes 5 and 3
 @selected_packs = []
 end

 def allocate(qty)
 remaining_qty = nil

 # ==
 # packs are allocated in large packs first order
 # to minimize the packaging space
 # ==
 @packs.each do |pack|
 remaining_qty = qty - pack

 if remaining_qty > 0
 ret_val = allocate(remaining_qty)
 if ret_val == 0
 @selected_packs << pack
 remaining_qty = 0
 break
 end
 elsif remaining_qty == 0
 @selected_packs << pack
 break
 end
 end

 remaining_qty
 end
end

bakery = Bakery.new
bakery.allocate(16)
puts "Pack combination is: #{bakery.selected_packs.inspect}"

http://nithinbekal.com/posts/ruby-tco/
http://timelessrepo.com/tailin-ruby
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 144

Output is:

Pack combination is: [3, 3, 5, 5]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 145

Chapter 39: Splat operator (*)
Section 39.1: Variable number of arguments
The splat operator removes individual elements of an array and makes them into a list. This is most commonly
used to create a method that accepts a variable number of arguments:

First parameter is the subject and the following parameters are their spouses
def print_spouses(person, *spouses)
 spouses.each do |spouse|
 puts "#{person} married #{spouse}."
 end
end

print_spouses('Elizabeth', 'Conrad', 'Michael', 'Mike', 'Eddie', 'Richard', 'John', 'Larry')

Notice that an array only counts as one item on the list, so you will need to us the splat operator on the calling side
too if you have an array you want to pass:

bonaparte = ['Napoleon','Joséphine','Marie Louise']
print_spouses(*bonaparte)

Section 39.2: Coercing arrays into parameter list
Suppose you had an array:

pair = ['Jack','Jill']

And a method that takes two arguments:

def print_pair (a, b)
 puts "#{a} and #{b} are a good couple!"
end

You might think you could just pass the array:

print_pair(pair) # wrong number of arguments (1 for 2) (ArgumentError)

Since the array is just one argument, not two, so Ruby throws an exception. You could pull out each element
individually:

print_pair(pair[0], pair[1])

Or you can use the splat operator to save yourself some effort:

print_pair(*pair)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 146

Chapter 40: JSON with Ruby
Section 40.1: Using JSON with Ruby
JSON (JavaScript Object Notation) is a lightweight data interchange format. Many web applications use it to send
and receive data.

In Ruby you can simply work with JSON.

At first you have to require 'json', then you can parse a JSON string via the JSON.parse() command.

require 'json'

j = '{"a": 1, "b": 2}'
puts JSON.parse(j)
>> {"a"=>1, "b"=>2}

What happens here, is that the parser generates a Ruby Hash out of the JSON.

The other way around, generating JSON out of a Ruby hash is as simple as parsing. The method of choice is
to_json:

require 'json'

hash = { 'a' => 1, 'b' => 2 }
json = hash.to_json
puts json
>> {"a":1,"b":2}

Section 40.2: Using Symbols
You can use JSON together with Ruby symbols. With the option symbolize_names for the parser, the keys in the
resulting hash will be symbols instead of strings.

json = '{ "a": 1, "b": 2 }'
puts JSON.parse(json, symbolize_names: true)
>> {:a=>1, :b=>2}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 147

Chapter 41: Pure RSpec JSON API testing
Section 41.1: Testing Serializer object and introducing it to
Controller
Let say you want to build your API to comply jsonapi.org specification and the result should look like:

{
 "article": {
 "id": "305",
 "type": "articles",
 "attributes": {
 "title": "Asking Alexandria"
 }
 }
}

Test for Serializer object may look like this:

spec/serializers/article_serializer_spec.rb

require 'rails_helper'

RSpec.describe ArticleSerializer do
 subject { described_class.new(article) }
 let(:article) { instance_double(Article, id: 678, title: "Bring Me The Horizon") }

 describe "#as_json" do
 let(:result) { subject.as_json }

 it 'root should be article Hash' do
 expect(result).to match({
 article: be_kind_of(Hash)
 })
 end

 context 'article hash' do
 let(:article_hash) { result.fetch(:article) }

 it 'should contain type and id' do
 expect(article_hash).to match({
 id: article.id.to_s,
 type: 'articles',
 attributes: be_kind_of(Hash)
 })
 end

 context 'attributes' do
 let(:article_hash_attributes) { article_hash.fetch(:attributes) }

 it do
 expect(article_hash_attributes).to match({
 title: /[Hh]orizon/,
 })
 end
 end
 end
 end

http://jsonapi.org/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 148

end

Serializer object may look like this:

app/serializers/article_serializer.rb

class ArticleSerializer
 attr_reader :article

 def initialize(article)
 @article = article
 end

 def as_json
 {
 article: {
 id: article.id.to_s,
 type: 'articles',
 attributes: {
 title: article.title
 }
 }
 }
 end
end

When we run our "serializers" specs everything passes.

That's pretty boring. Let's introduce a typo to our Article Serializer: Instead of type: "articles" let's return type:
"events" and rerun our tests.

rspec spec/serializers/article_serializer_spec.rb

.F.

Failures:

 1) ArticleSerializer#as_json article hash should contain type and id
 Failure/Error:
 expect(article_hash).to match({
 id: article.id.to_s,
 type: 'articles',
 attributes: be_kind_of(Hash)
 })

 expected {:id=>"678", :type=>"event",
:attributes=>{:title=>"Bring Me The Horizon"}} to match {:id=>"678",
:type=>"articles", :attributes=>(be a kind of Hash)}
 Diff:

 @@ -1,4 +1,4 @@
 -:attributes => (be a kind of Hash),
 +:attributes => {:title=>"Bring Me The Horizon"},
 :id => "678",
 -:type => "articles",
 +:type => "events",

 # ./spec/serializers/article_serializer_spec.rb:20:in `block (4
levels) in <top (required)>'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 149

Once you've run the test it's pretty easy to spot the error.

Once you fix the error (correct the type to be article) you can introduce it to Controller like this:

app/controllers/v2/articles_controller.rb
module V2
 class ArticlesController < ApplicationController
 def show
 render json: serializer.as_json
 end

 private
 def article
 @article ||= Article.find(params[:id])
 end

 def serializer
 @serializer ||= ArticleSerializer.new(article)
 end
 end
end

This example is based on article: http://www.eq8.eu/blogs/30-pure-rspec-json-api-testing

http://www.eq8.eu/blogs/30-pure-rspec-json-api-testing
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 150

Chapter 42: Gem Creation/Management
Section 42.1: Gemspec Files
Each gem has a file in the format of <gem name>.gemspec which contains metadata about the gem and it's files. The
format of a gemspec is as follows:

Gem::Specification.new do |s|
 # Details about gem. They are added in the format:
 s.<detail name> = <detail value>
end

The fields required by RubyGems are:

Either author = string or authors = array

Use author = if there is only one author, and authors = when there are multiple. For authors= use an array which
lists the authors names.

files = array

Here array is a list of all the files in the gem. This can also be used with the Dir[] function, for example if all your
files are in the /lib/ directory, then you can use files = Dir["/lib/"].

name = string

Here string is just the name of your gem. Rubygems recommends a few rules you should follow when naming your
gem.

Use underscores, NO SPACES1.
Use only lowercase letters2.
Use hypens for gem extension (e.g. if your gem is named example for an extension you would name it3.
example-extension) so that when then extension is required it can be required as require
"example/extension".

RubyGems also adds "If you publish a gem on rubygems.org it may be removed if the name is objectionable,
violates intellectual property or the contents of the gem meet these criteria. You can report such a gem on the
RubyGems Support site."

platform=

I don't know

require_paths=

I don't know

summary= string

String is a summery of the gems purpose and anything that you would like to share about the gem.

version= string

http://guides.rubygems.org/name-your-gem/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 151

The current version number of the gem.

The recommended fields are:

email = string

An email address that will be associated with the gem.

homepage= string

The website where the gem lives.

Either license= or licenses=

I don't know

Section 42.2: Building A Gem
Once you have created your gem to publish it you have to follow a few steps:

Build your gem with gem build <gem name>.gemspec (the gemspec file must exist)1.
Create a RubyGems account if you do not already have one here2.
Check to make sure that no gems exist that share your gems name3.
Publish your gem with gem publish <gem name>.<gem version number>.gem4.

Section 42.3: Dependencies
To list the dependency tree:

gem dependency

To list which gems depend on a specific gem (bundler for example)

gem dependency bundler --reverse-dependencies

https://rubygems.org/sign_up
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 152

Chapter 43: rbenv
Section 43.1: Uninstalling a Ruby
There are two ways to uninstall a particular version of Ruby. The easiest is to simply remove the directory from
~/.rbenv/versions:

$ rm -rf ~/.rbenv/versions/2.1.0

Alternatively, you can use the uninstall command, which does exactly the same thing:

$ rbenv uninstall 2.1.0

If this version happens to be in use somewhere, you'll need to update your global or local version. To revert to the
version that's first in your path (usually the default provided by your system) use:

$ rbenv global system

Section 43.2: Install and manage versions of Ruby with rbenv
The easiest way to install and manage various versions of Ruby with rbenv is to use the ruby-build plugin.

First clone the rbenv repository to your home directory:

$ git clone https://github.com/rbenv/rbenv.git ~/.rbenv

Then clone the ruby-build plugin:

$ git clone https://github.com/rbenv/ruby-build.git ~/.rbenv/plugins/ruby-build

Ensure that rbenv is initialized in your shell session, by adding this to your .bash_profile or .zshrc:

type rbenv > /dev/null
if ["$?" = "0"]; then
 eval "$(rbenv init -)"
fi

(This essentially first checks if rbenv is available, and initializes it).

You will probably have to restart your shell session - or simply open a new Terminal window.

Note: If you're running on OSX, you will also need to install the Mac OS Command Line Tools with:

$ xcode-select --install

You can also install rbenv using Homebrew instead of building from the source:

$ brew update
$ brew install rbenv

Then follow the instructions given by:

$ rbenv init

http://brew.sh/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 153

Install a new version of Ruby:

List the versions available with:

$ rbenv install --list

Choose a version and install it with:

$ rbenv install 2.2.0

Mark the installed version as the global version - i.e. the one that your system uses by default:

$ rbenv global 2.2.0

Check what your global version is with:

$ rbenv global
=> 2.2.0

You can specify a local project version with:

$ rbenv local 2.1.2
=> (Creates a .ruby-version file at the current directory with the specified version)

Footnotes:

[1]: Understanding PATH

https://github.com/rbenv/rbenv#understanding-path
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 154

Chapter 44: Gem Usage
Section 44.1: Installing ruby gems
This guide assumes you already have Ruby installed. If you're using Ruby < 1.9 you'll have to manually install
RubyGems as it won't be included natively.

To install a ruby gem, enter the command:

gem install [gemname]

If you are working on a project with a list of gem dependencies, then these will be listed in a file named Gemfile. To
install a new gem in the project, add the following line of code in the Gemfile:

gem 'gemname'

This Gemfile is used by the Bundler gem to install dependencies your project requires, this does however mean
that you'll have to install Bundler first by running (if you haven't already):

gem install bundler

Save the file, and then run the command:

bundle install

Specifying versions

The version number can be specified on the command live, with the -v flag, such as:

gem install gemname -v 3.14

When specifying version numbers in a Gemfile, you have several options available:

No version specified (gem 'gemname') -- Will install the latest version which is compatible with other gems in
the Gemfile.
Exact version specified (gem 'gemname', '3.14') -- Will only attempt to install version 3.14 (and fail if this is
incompatible with other gems in the Gemfile).
Optimistic minimum version number (gem 'gemname', '>=3.14') -- Will only attempt to install the latest
version which is compatible with other gems in the Gemfile, and fails if no version greater than or equal to
3.14 is compatible. The operator > can also be used.
Pessimistic minimum version number (gem 'gemname', '~>3.14') -- This is functionally equivalent to using
gem 'gemname', '>=3.14', '<4'. In other words, only the number after the final period is permitted to
increase.

As a best practice: You might want to use one of the Ruby version management libraries like rbenv or rvm.
Through these libraries, you can install different versions of Ruby runtimes and gems accordingly. So, when working
in a project, this will be especially handy because most of the projects are coded against a known Ruby version.

Section 44.2: Gem installation from github/filesystem
You can install a gem from github or filesystem. If the gem has been checked out from git or somehow already on
the file system, you could install it using

https://rubygems.org/pages/download
https://rubygems.org/pages/download
http://guides.rubygems.org/rubygems-basics/
https://rubygems.org/gems/bundler
https://github.com/rbenv/rbenv
https://github.com/rvm/rvm
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 155

gem install --local path_to_gem/filename.gem

Installing gem from github. Download the sources from github

mkdir newgem
cd newgem
git clone https://urltogem.git

Build the gem

gem build GEMNAME.gemspec
gem install gemname-version.gem

Section 44.3: Checking if a required gem is installed from
within code
To check if a required gem is installed, from within your code, you can use the following (using nokogiri as an
example):

begin
 found_gem = Gem::Specification.find_by_name('nokogiri')
 require 'nokogiri'

 <the rest of your code>
rescue Gem::LoadError
end

However, this can be further extended to a function that can be used in setting up functionality within your code.

def gem_installed?(gem_name)
 found_gem = false
 begin
 found_gem = Gem::Specification.find_by_name(gem_name)
 rescue Gem::LoadError
 return false
 else
 return true
 end
end

Now you can check if the required gem is installed, and print an error message.

if gem_installed?('nokogiri')
 require 'nokogiri'
else
 printf "nokogiri gem required\n"
 exit 1
end

or

if gem_installed?('nokogiri')
 require 'nokogiri'
else
 require 'REXML'
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 156

Section 44.4: Using a Gemfile and Bundler
A Gemfile is the standard way to organize dependencies in your application. A basic Gemfile will look like this:

source 'https://rubygems.org'

gem 'rack'
gem 'sinatra'
gem 'uglifier'

You can specify the versions of the gem you want as follows:

Match except on point release. Use only 1.5.X
gem 'rack', '~>1.5.2'
Use a specific version.
gem 'sinatra', '1.4.7'
Use at least a version or anything greater.
gem 'uglifier', '>= 1.3.0'

You can also pull gems straight from a git repo:

pull a gem from github
gem 'sinatra', git: 'https://github.com/sinatra/sinatra.git'
you can specify a sha
gem 'sinatra', git: 'https://github.com/sinatra/sinatra.git', sha:
'30d4fb468fd1d6373f82127d845b153f17b54c51'
you can also specify a branch, though this is often unsafe
gem 'sinatra', git: 'https://github.com/sinatra/sinatra.git', branch: 'master'

You can also group gems depending on what they are used for. For example:

group :development, :test do
 # This gem is only available in dev and test, not production.
 gem 'byebug'
end

You can specify which platform certain gems should run on if you application needs to be able to run on multiple
platforms. For example:

platform :jruby do
 gem 'activerecord-jdbc-adapter'
 gem 'jdbc-postgres'
end

platform :ruby do
 gem 'pg'
end

To install all the gems from a Gemfile do:

gem install bundler
bundle install

Section 44.5: Bundler/inline (bundler v1.10 and later)
Sometimes you need to make a script for someone but you are not sure what he has on his machine. Is there
everything that your script needs? Not to worry. Bundler has a great function called in line.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 157

It provides a gemfile method and before the script is run it downloads and requires all the necessary gems. A little
example:

require 'bundler/inline' #require only what you need

#Start the bundler and in it use the syntax you are already familiar with
gemfile(true) do
 source 'https://rubygems.org'
 gem 'nokogiri', '~> 1.6.8.1'
 gem 'ruby-graphviz'
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 158

Chapter 45: Singleton Class
Section 45.1: Introduction
Ruby has three types of objects:

Classes and modules which are instances of class Class or class Module.
Instances of classes.
Singleton Classes.

Each object has a class which contains its methods:

class Example
end

object = Example.new

object.class # => Example
Example.class # => Class
Class.class # => Class

Objects themselves can't contain methods, only their class can. But with singleton classes, it is possible to add
methods to any object including other singleton classes.

def object.foo
 :foo
end
object.foo #=> :foo

foo is defined on singleton class of object. Other Example instances can not reply to foo.

Ruby creates singleton classes on demand. Accessing them or adding methods to them forces Ruby to create them.

Section 45.2: Inheritance of Singleton Class
Subclassing also Subclasses Singleton Class
class Example
end

Example.singleton_class #=> #<Class:Example>

def Example.foo
 :example
end

class SubExample < Example
end

SubExample.foo #=> :example

SubExample.singleton_class.superclass #=> #<Class:Example>

Extending or Including a Module does not Extend Singleton Class
module ExampleModule
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 159

def ExampleModule.foo
 :foo
end

class Example
 extend ExampleModule
 include ExampleModule
end

Example.foo #=> NoMethodError: undefined method

Section 45.3: Singleton classes
All objects are instances of a class. However, that is not the whole truth. In Ruby, every object also has a somewhat
hidden singleton class.

This is what allows methods to be defined on individual objects. The singleton class sits between the object itself
and its actual class, so all methods defined on it are available for that object, and that object only.

object = Object.new

def object.exclusive_method
 'Only this object will respond to this method'
end

object.exclusive_method
=> "Only this object will respond to this method"

Object.new.exclusive_method rescue $!
=> #<NoMethodError: undefined method `exclusive_method' for #<Object:0xa17b77c>>

The example above could have been written using define_singleton_method:

object.define_singleton_method :exclusive_method do
 "The method is actually defined in the object's singleton class"
end

Which is the same as defining the method on object's singleton_class:

send is used because define_method is private
object.singleton_class.send :define_method, :exclusive_method do
 "Now we're defining an instance method directly on the singleton class"
end

Before the existence of singleton_class as part of Ruby's core API, singleton classes were known as metaclasses
and could be accessed via the following idiom:

class << object
 self # refers to object's singleton_class
end

Section 45.4: Message Propagation with Singleton Class
Instances never contain a method they only carry data. However we can define a singleton class for any object
including an instance of a class.

When a message is passed to an object (method is called) Ruby first checks if a singleton class is defined for that

http://ruby-doc.org/core/Object.html#method-i-define_singleton_method
http://ruby-doc.org/core/Object.html#method-i-singleton_class
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 160

object and if it can reply to that message otherwise Ruby checks instance's class' ancestors chain and walks up on
that.

class Example
 def foo
 :example
 end
end

Example.new.foo #=> :example

module PrependedModule
 def foo
 :prepend
 end
end

class Example
 prepend PrependedModule
end

Example.ancestors #=> [Prepended, Example, Object, Kernel, BasicObject]
e = Example.new
e.foo #=> :prepended

def e.foo
 :singleton
end

e.foo #=> :singleton

Section 45.5: Reopening (monkey patching) Singleton Classes
There are three ways to reopen a Singleton Class

Using class_eval on a singleton class.
Using class << block.
Using def to define a method on the object's singleton class directly

class Example
end

Example.singleton_class.class_eval do
 def foo
 :foo
 end
end

Example.foo #=> :foo

class Example
end

class << Example
 def bar
 :bar
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 161

Example.bar #=> :bar

class Example
end

def Example.baz
 :baz
end

Example.baz #=> :baz

Every object has a singleton class which you can access

class Example
end
ex1 = Example.new
def ex1.foobar
 :foobar
end
ex1.foobar #=> :foobar

ex2 = Example.new
ex2.foobar #=> NoMethodError

Section 45.6: Accessing Singleton Class
There are two ways to get singleton class of an object

singleton_class method.
Reopening singleton class of an object and returning self.

object.singleton_class

singleton_class = class << object
 self
end

Section 45.7: Accessing Instance/Class Variables in Singleton
Classes
Singleton classes share their instance/class variables with their object.

class Example
 @@foo = :example
end

def Example.foo
 class_variable_get :@@foo
end

Example.foo #=> :example

class Example
 def initialize
 @foo = 1
 end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 162

 def foo
 @foo
 end
end

e = Example.new

e.instance_eval <<-BLOCK
 def self.increase_foo
 @foo += 1
 end
BLOCK

e.increase_foo
e.foo #=> 2

Blocks close around their instance/class variables target. Accessing instance or class variables using a block in
class_eval or instance_eval isn't possible. Passing a string to class_eval or using class_variable_get works
around the problem.

class Foo
 @@foo = :foo
end

class Example
 @@foo = :example

 Foo.define_singleton_method :foo do
 @@foo
 end
end

Foo.foo #=> :example

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 163

Chapter 46: Queue
Section 46.1: Multiple Workers One Sink
We want to gather data created by multiple Workers.

First we create a Queue:

sink = Queue.new

Then 16 workers all generating a random number and pushing it into sink:

(1..16).to_a.map do
 Thread.new do
 sink << rand(1..100)
 end
end.map(&:join)

And to get the data, convert a Queue to an Array:

data = [].tap { |a| a << sink.pop until sink.empty? }

Section 46.2: Converting a Queue into an Array
q = Queue.new
q << 1
q << 2

a = Array.new
a << q.pop until q.empty?

Or a one liner:

[].tap { |array| array < queue.pop until queue.empty? }

Section 46.3: One Source Multiple Workers
We want to process data in parallel.

Let's populate source with some data:

source = Queue.new
data = (1..100)
data.each { |e| source << e }

Then create some workers to process data:

(1..16).to_a.map do
 Thread.new do
 until source.empty?
 item = source.pop
 sleep 0.5
 puts "Processed: #{item}"
 end
 end

http://stackoverflow.com/a/34481350/2647317
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 164

end.map(&:join)

Section 46.4: One Source - Pipeline of Work - One Sink
We want to process data in parallel and push it down the line to be processed by other workers.

Since Workers both consume and produce data we have to create two queues:

first_input_source = Queue.new
first_output_sink = Queue.new
100.times { |i| first_input_source << i }

First wave of workers read an item from first_input_source, process the item, and write results in
first_output_sink:

(1..16).to_a.map do
 Thread.new do
 loop do
 item = first_input_source.pop
 first_output_source << item ** 2
 first_output_source << item ** 3
 end
 end
end

Second wave of workers uses first_output_sink as its input source and reads, process then writes to another
output sink:

second_input_source = first_output_sink
second_output_sink = Queue.new

(1..32).to_a.map do
 Thread.new do
 loop do
 item = second_input_source.pop
 second_output_sink << item * 2
 second_output_sink << item * 3
 end
 end
end

Now second_output_sink is the sink, let's convert it to an array:

sleep 5 # workaround in place of synchronization
sink = second_output_sink
[].tap { |a| a << sink.pop until sink.empty? }

Section 46.5: Pushing Data into a Queue - #push
q = Queue.new
q << "any object including another queue"
or
q.push :data

There is no high water mark, queues can infinitely grow.
#push never blocks

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 165

Section 46.6: Pulling Data from a Queue - #pop
q = Queue.new
q << :data
q.pop #=> :data

#pop will block until there is some data available.
#pop can be used for synchronization.

Section 46.7: Synchronization - After a Point in Time
syncer = Queue.new

a = Thread.new do
 syncer.pop
 puts "this happens at end"
end

b = Thread.new do
 puts "this happens first"
 STDOUT.flush
 syncer << :ok
end

[a, b].map(&:join)

Section 46.8: Merging Two Queues
To avoid infinitely blocking, reading from queues shouldn't happen on the thread merge is happening on.
To avoid synchronization or infinitely waiting for one of queues while other has data, reading from queues
shouldn't happen on same thread.

Let's start by defining and populating two queues:

q1 = Queue.new
q2 = Queue.new
(1..100).each { |e| q1 << e }
(101..200).each { |e| q2 << e }

We should create another queue and push data from other threads into it:

merged = Queue.new

[q1, q2].map do |q|
 Thread.new do
 loop do
 merged << q.pop
 end
 end
end

If you know you can completely consume both queues (consumption speed is higher than production, you won't
run out of RAM) there is a simpler approach:

merged = Queue.new
merged << q1.pop until q1.empty?

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 166

merged << q2.pop until q2.empty?

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 167

Chapter 47: Destructuring
Section 47.1: Overview
Most of the magic of destructuring uses the splat (*) operator.

Example Result / comment
a, b = [0,1] a=0, b=1

a, *rest = [0,1,2,3] a=0, rest=[1,2,3]

a, * = [0,1,2,3] a=0 Equivalent to .first
*, z = [0,1,2,3] z=3 Equivalent to .last

Section 47.2: Destructuring Block Arguments
triples = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

triples.each { |(first, second, third)| puts second }
2
5
8

triples.map { |(first, *rest)| rest.join(' ') } # => ["2 3", "5 6", "8 9"]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 168

Chapter 48: Struct
Section 48.1: Creating new structures for data
Struct defines new classes with the specified attributes and accessor methods.

Person = Struct.new :first_name, :last_name

You can then instantiate objects and use them:

person = Person.new 'John', 'Doe'
=> #<struct Person first_name="John", last_name="Doe">

person.first_name
=> "John"

person.last_name
=> "Doe"

Section 48.2: Customizing a structure class
Person = Struct.new :name do
 def greet(someone)
 "Hello #{someone}! I am #{name}!"
 end
end

Person.new('Alice').greet 'Bob'
=> "Hello Bob! I am Alice!"

Section 48.3: Attribute lookup
Attributes can be accessed strings and symbols as keys. Numerical indexes also work.

Person = Struct.new :name
alice = Person.new 'Alice'

alice['name'] # => "Alice"
alice[:name] # => "Alice"
alice[0] # => "Alice"

http://ruby-doc.org/core/Struct.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 169

Chapter 49: Metaprogramming
Metaprogramming can be described in two ways:

“Computer programs that write or manipulate other programs (or themselves) as their data, or that do part of the
work at compile time that would otherwise be done at runtime”.

More simply put: Metaprogramming is writing code that writes code during runtime to make your life easier.

Section 49.1: Implementing "with" using instance evaluation
Many languages feature a with statement that allows programmers to omit the receiver of method calls.

with can be easily emulated in Ruby using instance_eval:

def with(object, &block)
 object.instance_eval &block
end

The with method can be used to seamlessly execute methods on objects:

hash = Hash.new

with hash do
 store :key, :value
 has_key? :key # => true
 values # => [:value]
end

Section 49.2: send() method
send() is used to pass message to object. send() is an instance method of the Object class. The first argument in
send() is the message that you're sending to the object - that is, the name of a method. It could be string or
symbol but symbols are preferred. Then arguments those need to pass in method, those will be the remaining
arguments in send().

class Hello
 def hello(*args)
 puts 'Hello ' + args.join(' ')
 end
end
h = Hello.new
h.send :hello, 'gentle', 'readers' #=> "Hello gentle readers"
h.send(:hello, 'gentle', 'readers') #=> Here :hello is method and rest are the arguments to method.

Here is the more descriptive example
class Account
 attr_accessor :name, :email, :notes, :address

 def assign_values(values)
 values.each_key do |k, v|
 # How send method would look a like
 # self.name = value[k]
 self.send("#{k}=", values[k])
 end
 end

http://ruby-doc.org/core/BasicObject.html#method-i-instance_eval
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 170

end

user_info = {
 name: 'Matt',
 email: 'test@gms.com',
 address: '132 random st.',
 notes: "annoying customer"
}

account = Account.new
If attributes gets increase then we would messup the code
#--------- Bad way --------------
account.name = user_info[:name]
account.address = user_info[:address]
account.email = user_info[:email]
account.notes = user_info[:notes]

--------- Meta Programing way --------------
account.assign_values(user_info) # With single line we can assign n number of attributes

puts account.inspect

Note: send() itself is not recommended anymore. Use __send__() which has the power to call private methods, or
(recommended) public_send()

Section 49.3: Defining methods dynamically
With Ruby you can modify the structure of the program in execution time. One way to do it, is by defining methods
dynamically using the method method_missing.

Let's say that we want to be able to test if a number is greater than other number with the syntax
777.is_greater_than_123?.

open Numeric class
class Numeric
 # override `method_missing`
 def method_missing(method_name,*args)
 # test if the method_name matches the syntax we want
 if method_name.to_s.match /^is_greater_than_(\d+)\?$/
 # capture the number in the method_name
 the_other_number = $1.to_i
 # return whether the number is greater than the other number or not
 self > the_other_number
 else
 # if the method_name doesn't match what we want, let the previous definition of
`method_missing` handle it
 super
 end
 end
end

One important thing to remember when using method_missing that one should also override respond_to? method:

class Numeric
 def respond_to?(method_name, include_all = false)
 method_name.to_s.match(/^is_greater_than_(\d+)\?$/) || super
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 171

Forgetting to do so leads to a inconsistent situation, when you can successfully call 600.is_greater_than_123, but
600.respond_to(:is_greater_than_123) returns false.

Section 49.4: Defining methods on instances
In ruby you can add methods to existing instances of any class. This allows you to add behavior to and instance of a
class without changing the behavior of the rest of the instances of that class.

class Example
 def method1(foo)
 puts foo
 end
end

#defines method2 on object exp
exp = Example.new
exp.define_method(:method2) {puts "Method2"}

#with method parameters
exp.define_method(:method3) {|name| puts name}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 172

Chapter 50: Dynamic Evaluation
Parameter Details
"source" Any Ruby source code
binding An instance of Binding class
proc An instance of Proc class

Section 50.1: Instance evaluation
The instance_eval method is available on all objects. It evaluates code in the context of the receiver:

object = Object.new

object.instance_eval do
 @variable = :value
end

object.instance_variable_get :@variable # => :value

instance_eval sets self to object for the duration of the code block:

object.instance_eval { self == object } # => true

The receiver is also passed to the block as its only argument:

object.instance_eval { |argument| argument == object } # => true

The instance_exec method differs in this regard: it passes its arguments to the block instead.

object.instance_exec :@variable do |name|
 instance_variable_get name # => :value
end

Section 50.2: Evaluating a String
Any String can be evaluated at runtime.

class Example
 def self.foo
 :foo
 end
end

eval "Example.foo" #=> :foo

Section 50.3: Evaluating Inside a Binding
Ruby keeps track of local variables and self variable via an object called binding. We can get binding of a scope
with calling Kernel#binding and evaluate string inside a binding via Binding#eval.

b = proc do
 local_variable = :local
 binding
end.call

http://ruby-doc.org/core-2.2.0/Binding.html
http://ruby-doc.org/core-2.2.0/Proc.html
http://ruby-doc.org/core/BasicObject.html#method-i-instance_eval
http://ruby-doc.org/core/BasicObject.html#method-i-instance_exec
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 173

b.eval "local_variable" #=> :local

def fake_class_eval klass, source = nil, &block
 class_binding = klass.send :eval, "binding"

 if block
 class_binding.local_variable_set :_fake_class_eval_block, block
 class_binding.eval "_fake_class_eval_block.call"
 else
 class_binding.eval source
 end
end

class Example
end

fake_class_eval Example, <<-BLOCK
 def self.foo
 :foo
 end
BLOCK

fake_class_eval Example do
 def bar
 :bar
 end
end

Example.foo #=> :foo
Example.new.bar #=> :bar

Section 50.4: Dynamically Creating Methods from Strings
Ruby offers define_method as a private method on modules and classes for defining new instance methods.
However, the 'body' of the method must be a Proc or another existing method.

One way to create a method from raw string data is to use eval to create a Proc from the code:

xml = <<ENDXML
<methods>
 <method name="go">puts "I'm going!"</method>
 <method name="stop">7*6</method>
</methods>
ENDXML

class Foo
 def self.add_method(name,code)
 body = eval("Proc.new{ #{code} }")
 define_method(name,body)
 end
end

require 'nokogiri' # gem install nokogiri
doc = Nokogiri.XML(xml)
doc.xpath('//method').each do |meth|
 Foo.add_method(meth['name'], meth.text)
end

f = Foo.new
p Foo.instance_methods(false) #=> [:go, :stop]

http://ruby-doc.org/core-2.3.1/Module.html#method-i-define_method
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 174

p f.public_methods(false) #=> [:go, :stop]
f.go #=> "I'm going!"
p f.stop #=> 42

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 175

Chapter 51: instance_eval
Parameter Details
string Contains the Ruby source code to be evaluated.
filename File name to use for error reporting.
lineno Line number to use for error reporting.
block The block of code to be evaluated.
obj The receiver is passed to the block as its only argument.

Section 51.1: Instance evaluation
The instance_eval method is available on all objects. It evaluates code in the context of the receiver:

object = Object.new

object.instance_eval do
 @variable = :value
end

object.instance_variable_get :@variable # => :value

instance_eval sets self to object for the duration of the code block:

object.instance_eval { self == object } # => true

The receiver is also passed to the block as its only argument:

object.instance_eval { |argument| argument == object } # => true

The instance_exec method differs in this regard: it passes its arguments to the block instead.

object.instance_exec :@variable do |name|
 instance_variable_get name # => :value
end

Section 51.2: Implementing with
Many languages feature a with statement that allows programmers to omit the receiver of method calls.

with can be easily emulated in Ruby using instance_eval:

def with(object, &block)
 object.instance_eval &block
end

The with method can be used to seamlessly execute methods on objects:

hash = Hash.new

with hash do
 store :key, :value
 has_key? :key # => true
 values # => [:value]

http://ruby-doc.org/core/BasicObject.html#method-i-instance_eval
http://ruby-doc.org/core/BasicObject.html#method-i-instance_exec
http://ruby-doc.org/core/BasicObject.html#method-i-instance_eval
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 176

end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 177

Chapter 52: Message Passing
Section 52.1: Introduction
In Object Oriented Design, objects receive messages and reply to them. In Ruby, sending a message is calling a method
and result of that method is the reply.

In Ruby message passing is dynamic. When a message arrives rather than knowing exactly how to reply to it Ruby
uses a predefined set of rules to find a method that can reply to it. We can use these rules to interrupt and reply to
the message, send it to another object or modify it among other actions.

Each time an object receives a message Ruby checks:

If this object has a singleton class and it can reply to this message.1.
Looks up this object's class then class' ancestors chain.2.
One by one checks if a method is available on this ancestor and moves up the chain.3.

Section 52.2: Message Passing Through Inheritance Chain
class Example
 def example_method
 :example
 end

 def subexample_method
 :example
 end

 def not_missed_method
 :example
 end

 def method_missing name
 return :example if name == :missing_example_method
 return :example if name == :missing_subexample_method
 return :subexample if name == :not_missed_method
 super
 end
end

class SubExample < Example
 def subexample_method
 :subexample
 end

 def method_missing name
 return :subexample if name == :missing_subexample_method
 return :subexample if name == :not_missed_method
 super
 end
end

s = Subexample.new

To find a suitable method for SubExample#subexample_method Ruby first looks at ancestors chain of SubExample

SubExample.ancestors # => [SubExample, Example, Object, Kernel, BasicObject]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 178

It starts from SubExample. If we send subexample_method message Ruby chooses the one available one SubExample
and ignores Example#subexample_method.

s.subexample_method # => :subexample

After SubExample it checks Example. If we send example_method Ruby checks if SubExample can reply to it or not and
since it can't Ruby goes up the chain and looks into Example.

s.example_method # => :example

After Ruby checks all defined methods then it runs method_missing to see if it can reply or not. If we send
missing_subexample_method Ruby won't be able to find a defined method on SubExample so it moves up to
Example. It can't find a defined method on Example or any other class higher in chain either. Ruby starts over and
runs method_missing. method_missing of SubExample can reply to missing_subexample_method.

s.missing_subexample_method # => :subexample

However if a method is defined Ruby uses defined version even if it is higher in the chain. For example if we send
not_missed_method even though method_missing of SubExample can reply to it Ruby walks up on SubExample
because it doesn't have a defined method with that name and looks into Example which has one.

s.not_missed_method # => :example

Section 52.3: Message Passing Through Module Composition
Ruby moves up on ancestors chain of an object. This chain can contain both modules and classes. Same rules about
moving up the chain apply to modules as well.

class Example
end

module Prepended
 def initialize *args
 return super :default if args.empty?
 super
 end
end

module FirstIncluded
 def foo
 :first
 end
end

module SecondIncluded
 def foo
 :second
 end
end

class SubExample < Example
 prepend Prepended
 include FirstIncluded
 include SecondIncluded

 def initialize data = :subexample
 puts data

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 179

 end
end

SubExample.ancestors # => [Prepended, SubExample, SecondIncluded, FirstIncluded, Example, Object,
Kernel, BasicObject]

s = SubExample.new # => :default
s.foo # => :second

Section 52.4: Interrupting Messages
There are two ways to interrupt messages.

Use method_missing to interrupt any non defined message.
Define a method in middle of a chain to intercept the message

After interrupting messages, it is possible to:

Reply to them.
Send them somewhere else.
Modify the message or its result.

Interrupting via method_missing and replying to message:

class Example
 def foo
 @foo
 end

 def method_missing name, data
 return super unless name.to_s =~ /=$/
 name = name.to_s.sub(/=$/, "")
 instance_variable_set "@#{name}", data
 end
end

e = Example.new

e.foo = :foo
e.foo # => :foo

Intercepting message and modifying it:

class Example
 def initialize title, body
 end
end

class SubExample < Example
end

Now let's imagine our data is "title:body" and we have to split them before calling Example. We can define
initialize on SubExample.

class SubExample < Example
 def initialize raw_data
 processed_data = raw_data.split ":"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 180

 super processed_data[0], processed_data[1]
 end
end

Intercepting message and sending it to another object:

class ObscureLogicProcessor
 def process data
 :ok
 end
end

class NormalLogicProcessor
 def process data
 :not_ok
 end
end

class WrapperProcessor < NormalLogicProcessor
 def process data
 return ObscureLogicProcessor.new.process data if data.obscure?

 super
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 181

Chapter 53: Keyword Arguments
Section 53.1: Using arbitrary keyword arguments with splat
operator
You can define a method to accept an arbitrary number of keyword arguments using the double splat (**) operator:

def say(**args)
 puts args
end

say foo: "1", bar: "2"
{:foo=>"1", :bar=>"2"}

The arguments are captured in a Hash. You can manipulate the Hash, for example to extract the desired arguments.

def say(**args)
 puts args[:message] || "Message not found"
end

say foo: "1", bar: "2", message: "Hello World"
Hello World

say foo: "1", bar: "2"
Message not found

Using a the splat operator with keyword arguments will prevent keyword argument validation, the method will
never raise an ArgumentError in case of unknown keyword.

As for the standard splat operator, you can re-convert a Hash into keyword arguments for a method:

def say(message: nil, before: "<p>", after: "</p>")
 puts "#{before}#{message}#{after}"
end

args = { message: "Hello World", after: "</p><hr>" }
say(**args)
<p>Hello World</p><hr>

args = { message: "Hello World", foo: "1" }
say(**args)
=> ArgumentError: unknown keyword: foo

This is generally used when you need to manipulate incoming arguments, and pass them to an underlying method:

def inner(foo:, bar:)
 puts foo, bar
end

def outer(something, foo: nil, bar: nil, baz: nil)
 puts something
 params = {}
 params[:foo] = foo || "Default foo"
 params[:bar] = bar || "Default bar"
 inner(**params)
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 182

outer "Hello:", foo: "Custom foo"
Hello:
Custom foo
Default bar

Section 53.2: Using keyword arguments
You define a keyword argument in a method by specifying the name in the method definition:

def say(message: "Hello World")
 puts message
end

say
=> "Hello World"

say message: "Today is Monday"
=> "Today is Monday"

You can define multiple keyword arguments, the definition order is irrelevant:

def say(message: "Hello World", before: "<p>", after: "</p>")
 puts "#{before}#{message}#{after}"
end

say
=> "<p>Hello World</p>"

say message: "Today is Monday"
=> "<p>Today is Monday</p>"

say after: "</p><hr>", message: "Today is Monday"
=> "<p>Today is Monday</p><hr>"

Keyword arguments can be mixed with positional arguments:

def say(message, before: "<p>", after: "</p>")
 puts "#{before}#{message}#{after}"
end

say "Hello World", before: "", after: ""
=> "Hello World"

Mixing keyword argument with positional argument was a very common approach before Ruby 2.1, because it was
not possible to define required keyword arguments.

Moreover, in Ruby < 2.0, it was very common to add an Hash at the end of a method definition to use for optional
arguments. The syntax is very similar to keyword arguments, to the point where optional arguments via Hash are
compatible with Ruby 2 keyword arguments.

def say(message, options = {})
 before = option.fetch(:before, "<p>")
 after = option.fetch(:after, "</p>")
 puts "#{before}#{message}#{after}"
end

The method call is syntactically equivalent to the keyword argument one
say "Hello World", before: "", after: ""

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 183

=> "Hello World"

Note that trying to pass a not-defined keyword argument will result in an error:

def say(message: "Hello World")
 puts message
end

say foo: "Hello"
=> ArgumentError: unknown keyword: foo

Section 53.3: Required keyword arguments
Version ≥ 2.1

Required keyword arguments were introduced in Ruby 2.1, as an improvement to keyword arguments.

To define a keyword argument as required, simply declare the argument without a default value.

def say(message:)
 puts message
end

say
=> ArgumentError: missing keyword: message

say message: "Hello World"
=> "Hello World"

You can also mix required and non-required keyword arguments:

def say(before: "<p>", message:, after: "</p>")
 puts "#{before}#{message}#{after}"
end

say
=> ArgumentError: missing keyword: message

say message: "Hello World"
=> "<p>Hello World</p>"

say message: "Hello World", before: "", after: ""
=> "Hello World"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 184

Chapter 54: Truthiness
Section 54.1: All objects may be converted to booleans in
Ruby
Use the double negation syntax to check for truthiness of values. All values correspond to a boolean, irrespective of
their type.

irb(main):001:0> !!1234
=> true
irb(main):002:0> !!"Hello, world!"
(irb):2: warning: string literal in condition
=> true
irb(main):003:0> !!true
=> true
irb(main):005:0> !!{a:'b'}
=> true

All values except nil and false are truthy.

irb(main):006:0> !!nil
=> false
irb(main):007:0> !!false
=> false

Section 54.2: Truthiness of a value can be used in if-else
constructs
You do not need to use double negation in if-else statements.

if 'hello'
 puts 'hey!'
else
 puts 'bye!'
end

The above code prints 'hey!' on the screen.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 185

Chapter 55: Implicit Receivers and
Understanding Self
Section 55.1: There is always an implicit receiver
In Ruby, there is always an implicit receiver for all method calls. The language keeps a reference to the current
implicit receiver stored in the variable self. Certain language keywords like class and module will change what self
points to. Understanding these behaviors is very helpful in mastering the language.

For example, when you first open irb

irb(main):001:0> self
=> main

In this case the main object is the implicit receiver (see http://stackoverflow.com/a/917842/417872 for more about
main).

You can define methods on the implicit receiver using the def keyword. For example:

irb(main):001:0> def foo(arg)
irb(main):002:1> arg.to_s
irb(main):003:1> end
=> :foo
irb(main):004:0> foo 1
=> "1"

This has defined the method foo on the instance of main object running in your repl.

Note that local variables are looked up before method names, so that if you define a local variable with the same
name, its reference will supersede the method reference. Continuing from the previous example:

irb(main):005:0> defined? foo
=> "method"
irb(main):006:0> foo = 1
=> 1
irb(main):007:0> defined? foo
=> "local-variable"
irb(main):008:0> foo
=> 1
irb(main):009:0> method :foo
=> #<Method: Object#foo>

The method method can still find the foo method because it doesn't check for local variables, while the normal
reference foo does.

Section 55.2: Keywords change the implicit receiver
When you define a class or module, the implicit receiver becomes a reference to the class itself. For example:

puts "I am #{self}"
class Example
 puts "I am #{self}"
end

http://stackoverflow.com/a/917842/417872
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 186

Executing the above code will print:

"I am main"
"I am Example"

Section 55.3: When to use self?
Most Ruby code utilizes the implicit receiver, so programmers who are new to Ruby are often confused about when
to use self. The practical answer is that self is used in two major ways:

1. To change the receiver.

Ordinarily the behavior of def inside a class or module is to create instance methods. Self can be used to define
methods on the class instead.

class Foo
 def bar
 1
 end

 def self.bar
 2
 end
end

Foo.new.bar #=> 1
Foo.bar #=> 2

2. To disambiguate the receiver

When local variables may have the same name as a method an explicit receiver may be required to disambiguate.

Examples:

class Example
 def foo
 1
 end

 def bar
 foo + 1
 end

 def baz(foo)
 self.foo + foo # self.foo is the method, foo is the local variable
 end

 def qux
 bar = 2
 self.bar + bar # self.bar is the method, bar is the local variable
 end
end

Example.new.foo #=> 1
Example.new.bar #=> 2
Example.new.baz(2) #=> 3
Example.new.qux #=> 4

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 187

The other common case requiring disambiguation involves methods that end in the equals sign. For instance:

class Example
 def foo=(input)
 @foo = input
 end

 def get_foo
 @foo
 end

 def bar(input)
 foo = input # will create a local variable
 end

 def baz(input)
 self.foo = input # will call the method
 end
end

e = Example.new
e.get_foo #=> nil
e.foo = 1
e.get_foo #=> 1
e.bar(2)
e.get_foo #=> 1
e.baz(2)
e.get_foo #=> 2

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 188

Chapter 56: Introspection
Section 56.1: View an object's methods
Inspecting an Object

You can find the public methods an object can respond to using either the methods or public_methods methods,
which return an array of symbols:

class Foo
 def bar; 42; end
end
f = Foo.new
def f.yay; 17; end
p f.methods.sort
#=> [:!, :!=, :!~, :<=>, :==, :===, :=~, :__id__, :__send__, :bar, :class, :clone,
#=> :define_singleton_method, :display, :dup, :enum_for, :eql?, :equal?, :extend,
#=> :freeze, :frozen?, :hash, :inspect, :instance_eval, :instance_exec,
#=> :instance_of?, :instance_variable_defined?, :instance_variable_get,
#=> :instance_variable_set, :instance_variables, :is_a?, :itself, :kind_of?,
#=> :method, :methods, :nil?, :object_id, :private_methods, :protected_methods,
#=> :public_method, :public_methods, :public_send, :remove_instance_variable,
#=> :respond_to?, :send, :singleton_class, :singleton_method, :singleton_methods,
#=> :taint, :tainted?, :tap, :to_enum, :to_s, :trust, :untaint, :untrust,
#=> :untrusted?, :yay]

For a more targeted list, you can remove methods common to all objects, e.g.

p (f.methods - Object.methods).sort
#=> [:bar,:yay]

Alternatively, you can pass false to methods or public_methods:

p f.methods(false) # public and protected singleton methods of `f`
#=> [:yay]

p f.public_methods(false)
#=> [:yay, :bar]

You can find the private and protected methods of an object using private_methods and protected_methods:

p f.private_methods.sort
#=> [:Array, :Complex, :DelegateClass, :Float, :Hash, :Integer, :Rational, :String,
#=> :__callee__, :__dir__, :__method__, :`, :abort, :at_exit, :autoload, :autoload?,
#=> :binding, :block_given?, :caller, :caller_locations, :catch,
#=> :default_src_encoding, :eval, :exec, :exit, :exit!, :fail, :fork, :format, :gem,
#=> :gem_original_require, :gets, :global_variables, :initialize, :initialize_clone,
#=> :initialize_copy, :initialize_dup, :irb_binding, :iterator?, :lambda, :load,
#=> :local_variables, :loop, :method_missing, :open, :p, :print, :printf, :proc,
#=> :putc, :puts, :raise, :rand, :readline, :readlines, :require, :require_relative,
#=> :respond_to_missing?, :select, :set_trace_func, :singleton_method_added,
#=> :singleton_method_removed, :singleton_method_undefined, :sleep, :spawn,
#=> :sprintf, :srand, :syscall, :system, :test, :throw, :trace_var, :trap,
#=> :untrace_var, :warn]

p f.protected_methods
#=> []

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 189

As with methods and public_methods, you can pass false to private_methods and protected_methods to trim
away inherited methods.

Inspecting a Class or Module

In addition to methods, public_methods, protected_methods, and private_methods, classes and modules expose
instance_methods, public_instance_methods, protected_instance_methods, and private_instance_methods to
determine the methods exposed for objects that inherit from the class or module. As above, you can pass false to
these methods to exclude inherited methods:

p Foo.instance_methods.sort
#=> [:!, :!=, :!~, :<=>, :==, :===, :=~, :__id__, :__send__, :bar, :class,
#=> :clone, :define_singleton_method, :display, :dup, :enum_for, :eql?,
#=> :equal?, :extend, :freeze, :frozen?, :hash, :inspect, :instance_eval,
#=> :instance_exec, :instance_of?, :instance_variable_defined?,
#=> :instance_variable_get, :instance_variable_set, :instance_variables,
#=> :is_a?, :itself, :kind_of?, :method, :methods, :nil?, :object_id,
#=> :private_methods, :protected_methods, :public_method, :public_methods,
#=> :public_send, :remove_instance_variable, :respond_to?, :send,
#=> :singleton_class, :singleton_method, :singleton_methods, :taint,
#=> :tainted?, :tap, :to_enum, :to_s, :trust, :untaint, :untrust, :untrusted?]

p Foo.instance_methods(false)
#=> [:bar]

Finally, if you forget the names of most of these in the future, you can find all of these methods using methods:

p f.methods.grep(/methods/)
#=> [:private_methods, :methods, :protected_methods, :public_methods,
#=> :singleton_methods]

p Foo.methods.grep(/methods/)
#=> [:public_instance_methods, :instance_methods, :private_instance_methods,
#=> :protected_instance_methods, :private_methods, :methods,
#=> :protected_methods, :public_methods, :singleton_methods]

Section 56.2: View an object's Instance Variables
It is possible to query an object about its instance variables using instance_variables,
instance_variable_defined?, and instance_variable_get, and modify them using instance_variable_set and
remove_instance_variable:

class Foo
 attr_reader :bar
 def initialize
 @bar = 42
 end
end
f = Foo.new
f.instance_variables #=> [:@bar]
f.instance_variable_defined?(:@baz) #=> false
f.instance_variable_defined?(:@bar) #=> true
f.instance_variable_get(:@bar) #=> 42
f.instance_variable_set(:@bar, 17) #=> 17
f.bar #=> 17
f.remove_instance_variable(:@bar) #=> 17
f.bar #=> nil
f.instance_variables #=> []

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 190

The names of instance variables include the @ symbol. You will get an error if you omit it:

f.instance_variable_defined?(:jim)
#=> NameError: `jim' is not allowed as an instance variable name

Section 56.3: View Global and Local Variables
The Kernel exposes methods for getting the list of global_variables and local_variables:

cats = 42
$demo = "in progress"
p global_variables.sort
#=> [:$!, :$", :$$, :$&, :$', :$*, :$+, :$,, :$-0, :$-F, :$-I, :$-K, :$-W, :$-a,
#=> :$-d, :$-i, :$-l, :$-p, :$-v, :$-w, :$., :$/, :$0, :$1, :$2, :$3, :$4, :$5,
#=> :$6, :$7, :$8, :$9, :$:, :$;, :$<, :$=, :$>, :$?, :$@, :$DEBUG, :$FILENAME,
#=> :$KCODE, :$LOADED_FEATURES, :$LOAD_PATH, :$PROGRAM_NAME, :$SAFE, :$VERBOSE,
#=> :$\, :$_, :$`, :$binding, :$demo, :$stderr, :$stdin, :$stdout, :$~]

p local_variables
#=> [:cats]

Unlike instance variables there are no methods specifically for getting, setting, or removing global or local variables.
Looking for such functionality is usually a sign that your code should be rewritten to use a Hash to store the values.
However, if you must modify global or local variables by name, you can use eval with a string:

var = "$demo"
eval(var) #=> "in progress"
eval("#{var} = 17")
p $demo #=> 17

By default, eval will evaluate your variables in the current scope. To evaluate local variables in a different scope,
you must capture the binding where the local variables exist.

def local_variable_get(name, bound=nil)
 foo = :inside
 eval(name,bound)
end

def test_1
 foo = :outside
 p local_variable_get("foo")
end

def test_2
 foo = :outside
 p local_variable_get("foo",binding)
end

test_1 #=> :inside
test_2 #=> :outside

In the above, test_1 did not pass a binding to local_variable_get, and so the eval was executed within the
context of that method, where a local variable named foo was set to :inside.

Section 56.4: View Class Variables
Classes and modules have the same methods for introspecting instance variables as any other object. Class and

http://ruby-doc.org/core-2.3.1/Kernel.html#method-i-global_variables
http://ruby-doc.org/core-2.3.1/Kernel.html#method-i-local_variables
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 191

modules also have similar methods for querying the class variables (@@these_things):

p Module.methods.grep(/class_variable/)
#=> [:class_variables, :class_variable_get, :remove_class_variable,
#=> :class_variable_defined?, :class_variable_set]

class Foo
 @@instances = 0
 def initialize
 @@instances += 1
 end
end

class Bar < Foo; end

5.times{ Foo.new }
3.times{ Bar.new }
p Foo.class_variables #=> [:@@instances]
p Bar.class_variables #=> [:@@instances]
p Foo.class_variable_get(:@@instances) #=> 8
p Bar.class_variable_get(:@@instances) #=> 8

Similar to instance variables, the name of class variables must begin with @@, or you will get an error:

p Bar.class_variable_defined?(:instances)
#=> NameError: `instances' is not allowed as a class variable name

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 192

Chapter 57: Refinements
Section 57.1: Monkey patching with limited scope
Monkey patching's main issue is that it pollutes the global scope. Your code working is at the mercy of all the
modules you use not stepping on each others toes. The Ruby solution to this is refinements, which are basically
monkey patches in a limited scope.

module Patches
 refine Fixnum do
 def plus_one
 self + 1
 end

 def plus(num)
 self + num
 end

 def concat_one
 self.to_s + '1'
 end
 end
end

class RefinementTest
 # has access to our patches
 using Patches

 def initialize
 puts 1.plus_one
 puts 3.concat_one
 end
end

Main scope doesn't have changes

1.plus_one
=> undefined method `plus_one' for 1:Fixnum (NoMethodError)

RefinementTest.new
=> 2
=> '31'

Section 57.2: Dual-purpose modules (refinements or global
patches)
It's a good practice to scope patches using Refinements, but sometimes it's nice to load it globally (for example in
development, or testing).

Say for example you want to start a console, require your library, and then have the patched methods available in
the global scope. You couldn't do this with refinements because using needs to be called in a class/module
definition. But it's possible to write the code in such a way that it's dual purpose:

module Patch
 def patched?; true; end
 refine String do
 include Patch

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 193

 end
end

globally
String.include Patch
"".patched? # => true

refinement
class LoadPatch
 using Patch
 "".patched? # => true
end

Section 57.3: Dynamic refinements
Refinements have special limitations.

refine can only be used in a module scope, but can be programmed using send :refine.

using is more limited. It can only be called in a class/module definition. Still, it can accept a variable pointing to a
module, and can be invoked in a loop.

An example showing these concepts:

module Patch
 def patched?; true; end
end

Patch.send(:refine, String) { include Patch }

patch_classes = [Patch]

class Patched
 patch_classes.each { |klass| using klass }
 "".patched? # => true
end

Since using is so static, there can be issued with load order if the refinement files are not loaded first. A way to
address this is to wrap the patched class/module definition in a proc. For example:

module Patch
 refine String do
 def patched; true; end
 end
end

class Foo
end

This is a proc since methods can't contain class definitions
create_patched_class = Proc.new do
 Foo.class_exec do
 class Bar
 using Patch
 def self.patched?; ''.patched == true; end
 end
 end
end
create_patched_class.call

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 194

Foo::Bar.patched? # => true

Calling the proc creates the patched class Foo::Bar. This can be delayed until after all the code has loaded.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 195

Chapter 58: Catching Exceptions with
Begin / Rescue
Section 58.1: A Basic Error Handling Block
Let's make a function to divide two numbers, that's very trusting about its input:

def divide(x, y)
 return x/y
end

This will work fine for a lot of inputs:

> puts divide(10, 2)
5

But not all

> puts divide(10, 0)
ZeroDivisionError: divided by 0

> puts divide(10, 'a')
TypeError: String can't be coerced into Fixnum

We can rewrite the function by wrapping the risky division operation in a begin... end block to check for errors,
and use a rescue clause to output a message and return nil if there is a problem.

def divide(x, y)
 begin
 return x/y
 rescue
 puts "There was an error"
 return nil
 end
end

> puts divide(10, 0)
There was an error

> puts divide(10, 'a')
There was an error

Section 58.2: Saving the Error
You can save the error if you want to use it in the rescue clause

def divide(x, y)
 begin
 x/y
 rescue => e
 puts "There was a %s (%s)" % [e.class, e.message]
 puts e.backtrace
 end
end

> divide(10, 0)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 196

There was a ZeroDivisionError (divided by 0)
 from (irb):10:in `/'
 from (irb):10
 from /Users/username/.rbenv/versions/2.3.1/bin/irb:11:in `<main>'

> divide(10, 'a')
There was a TypeError (String can't be coerced into Fixnum)
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb/workspace.rb:87:in `eval'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb/workspace.rb:87:in `evaluate'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb/context.rb:380:in `evaluate'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb.rb:489:in `block (2 levels) in eval_input'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb.rb:623:in `signal_status'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb.rb:486:in `block in eval_input'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb/ruby-lex.rb:246:in `block (2 levels) in
each_top_level_statement'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb/ruby-lex.rb:232:in `loop'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb/ruby-lex.rb:232:in `block in
each_top_level_statement'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb/ruby-lex.rb:231:in `catch'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb/ruby-lex.rb:231:in
`each_top_level_statement'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb.rb:485:in `eval_input'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb.rb:395:in `block in start'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb.rb:394:in `catch'
/Users/username/.rbenv/versions/2.3.1/lib/ruby/2.3.0/irb.rb:394:in `start'
/Users/username/.rbenv/versions/2.3.1/bin/irb:11:in `<main>'

Section 58.3: Checking for Dierent Errors
If you want to do different things based on the kind of error, use multiple rescue clauses, each with a different
error type as an argument.

def divide(x, y)
 begin
 return x/y
 rescue ZeroDivisionError
 puts "Don't divide by zero!"
 return nil
 rescue TypeError
 puts "Division only works on numbers!"
 return nil
 end
end

> divide(10, 0)
Don't divide by zero!

> divide(10, 'a')
Division only works on numbers!

If you want to save the error for use in the rescue block:

rescue ZeroDivisionError => e

Use a rescue clause with no argument to catch errors of a type not specified in another rescue clause.

def divide(x, y)
 begin
 return x/y

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 197

 rescue ZeroDivisionError
 puts "Don't divide by zero!"
 return nil
 rescue TypeError
 puts "Division only works on numbers!"
 return nil
 rescue => e
 puts "Don't do that (%s)" % [e.class]
 return nil
 end
end

> divide(nil, 2)
Don't do that (NoMethodError)

In this case, trying to divide nil by 2 is not a ZeroDivisionError or a TypeError, so it handled by the default rescue
clause, which prints out a message to let us know that it was a NoMethodError.

Section 58.4: Retrying
In a rescue clause, you can use retry to run the begin clause again, presumably after changing the circumstance
that caused the error.

def divide(x, y)
 begin
 puts "About to divide..."
 return x/y
 rescue ZeroDivisionError
 puts "Don't divide by zero!"
 y = 1
 retry
 rescue TypeError
 puts "Division only works on numbers!"
 return nil
 rescue => e
 puts "Don't do that (%s)" % [e.class]
 return nil
 end
end

If we pass parameters that we know will cause a TypeError, the begin clause is executed (flagged here by printing
out "About to divide") and the error is caught as before, and nil is returned:

> divide(10, 'a')
About to divide...
Division only works on numbers!
 => nil

But if we pass parameters that will cause a ZeroDivisionError, the begin clause is executed, the error is caught,
the divisor changed from 0 to 1, and then retry causes the begin block to be run again (from the top), now with a
different y. The second time around there is no error and the function returns a value.

> divide(10, 0)
About to divide... # First time, 10 ÷ 0
Don't divide by zero!
About to divide... # Second time 10 ÷ 1
=> 10

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 198

Section 58.5: Checking Whether No Error Was Raised
You can use an else clause for code that will be run if no error is raised.

def divide(x, y)
 begin
 z = x/y
 rescue ZeroDivisionError
 puts "Don't divide by zero!"
 rescue TypeError
 puts "Division only works on numbers!"
 return nil
 rescue => e
 puts "Don't do that (%s)" % [e.class]
 return nil
 else
 puts "This code will run if there is no error."
 return z
 end
end

The else clause does not run if there is an error that transfers control to one of the rescue clauses:

> divide(10,0)
Don't divide by zero!
=> nil

But if no error is raised, the else clause executes:

> divide(10,2)
This code will run if there is no error.
=> 5

Note that the else clause will not be executed if you return from the begin clause

def divide(x, y)
 begin
 z = x/y
 return z # Will keep the else clause from running!
 rescue ZeroDivisionError
 puts "Don't divide by zero!"
 else
 puts "This code will run if there is no error."
 return z
 end
end

> divide(10,2)
=> 5

Section 58.6: Code That Should Always Run
Use an ensure clause if there is code you always want to execute.

def divide(x, y)
 begin
 z = x/y
 return z

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 199

 rescue ZeroDivisionError
 puts "Don't divide by zero!"
 rescue TypeError
 puts "Division only works on numbers!"
 return nil
 rescue => e
 puts "Don't do that (%s)" % [e.class]
 return nil
 ensure
 puts "This code ALWAYS runs."
 end
end

The ensure clause will be executed when there is an error:

> divide(10, 0)
Don't divide by zero! # rescue clause
This code ALWAYS runs. # ensure clause
=> nil

And when there is no error:

> divide(10, 2)
This code ALWAYS runs. # ensure clause
=> 5

The ensure clause is useful when you want to make sure, for instance, that files are closed.

Note that, unlike the else clause, the ensure clause is executed before the begin or rescue clause returns a value. If
the ensure clause has a return that will override the return value of any other clause!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 200

Chapter 59: Command Line Apps
Section 59.1: How to write a command line tool to get the
weather by zip code
This will be a relatively comprehensive tutorial of how to write a command line tool to print the weather from the
zip code provided to the command line tool. The first step is to write the program in ruby to do this action. Let's
start by writing a method weather(zip_code) (This method requires the yahoo_weatherman gem. If you do not have
this gem you can install it by typing gem install yahoo_weatherman from the command line)

require 'yahoo_weatherman'

def weather(zip_code)
 client = Weatherman::Client.new
 client.lookup_by_location(zip_code).condition['temp']
end

We now have a very basic method that gives the weather when a zip code is provided to it. Now we need to make
this into a command line tool. Very quickly let's go over how a command line tool is called from the shell and the
associated variables. When a tool is called like this tool argument other_argument, in ruby there is a variable ARGV
which is an array equal to ['argument', 'other_argument']. Now let us implement this in our application

#!/usr/bin/ruby
require 'yahoo_weatherman'

def weather(zip_code)
 client = Weatherman::Client.new
 client.lookup_by_location(zip_code).condition['temp']
end

puts weather(ARGV[0])

Good! Now we have a command line application that can be run. Notice the she-bang line at the beginning of the file
(#!/usr/bin/ruby). This allows the file to become an executable. We can save this file as weather. (Note: Do not
save this as weather.rb, there is no need for the file extension and the she-bang tells whatever you need to tell that
this is a ruby file). Now we can run these commands in the shell (do not type in the $).

$ chmod a+x weather
$./weather [ZIPCODE]

After testing that this works, we can now sym-link this to the /usr/bin/local/ by running this command

$ sudo ln -s weather /usr/local/bin/weather

Now weather can be called on the command line no matter the directory you are in.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 201

Chapter 60: IRB
Option Details

-f Suppress read of ~/.irbrc

-m Bc mode (load mathn, fraction or matrix are available)

-d Set $DEBUG to true (same as `ruby -d')

-r load-module Same as `ruby -r'

-I path Specify $LOAD_PATH directory

-U Same as ruby -U

-E enc Same as ruby -E

-w Same as ruby -w

-W[level=2] Same as ruby -W

--inspect Use `inspect' for output (default except for bc mode)

--noinspect Don't use inspect for output

--readline Use Readline extension module

--noreadline Don't use Readline extension module

--prompt prompt-mode Switch prompt mode. Pre-defined prompt modes are default',simple', xmp' andinf-ruby'

--inf-ruby-mode Use prompt appropriate for inf-ruby-mode on emacs. Suppresses --readline.

--simple-prompt Simple prompt mode

--noprompt No prompt mode

--tracer Display trace for each execution of commands.

--back-trace-limit n Display backtrace top n and tail n. The default value is 16.

--irb_debug n Set internal debug level to n (not for popular use)

-v, --version Print the version of irb

IRB means "Interactive Ruby Shell". Basically it lets you execute ruby commands in real time (like the normal shell
does). IRB is an indispensable tool when dealing with Ruby API. Works as classical rb script. Use it for short and easy
commands. One of the nice IRB functions is that when you press tab while typing a method it will give you an advice
to what you can use (This is not an IntelliSense)

Section 60.1: Starting an IRB session inside a Ruby script
As of Ruby 2.4.0, you can start an interactive IRB session inside any Ruby script using these lines:

require 'irb'
binding.irb

This will start an IBR REPL where you will have the expected value for self and you will be able to access all local
variables and instance variables that are in scope. Type Ctrl+D or quit in order to resume your Ruby program.

This can be very useful for debugging.

Section 60.2: Basic Usage
IRB means "Interactive Ruby Shell", letting us execute ruby expressions from the standart input.

To start, type irb into your shell. You can write anything in Ruby, from simple expressions:

$ irb
2.1.4 :001 > 2+2

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 202

=> 4

to complex cases like methods:

2.1.4 :001> def method
2.1.4 :002?> puts "Hello World"
2.1.4 :003?> end
=> :method
2.1.4 :004 > method
Hello World
=> nil

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 203

Chapter 61: ERB
ERB stands for Embedded Ruby, and is used to insert Ruby variables inside templates, e.g. HTML and YAML. ERB is a
Ruby class that accepts text, and evaluates and replaces Ruby code surrounded by ERB markup.

Section 61.1: Parsing ERB
This example is filtered text from an IRB session.

=> require 'erb'
=> input = <<-HEREDOC

<% (0..10).each do |i| %>
 <%# This is a comment %>
 <%= i %> is <%= i.even? ? 'even' : 'odd' %>.
<% end %>

HEREDOC

=> parser = ERB.new(input)
=> output = parser.result
=> print output

 0 is even.

 1 is odd.

 2 is even.

 3 is odd.

 4 is even.

 5 is odd.

 6 is even.

 7 is odd.

 8 is even.

 9 is odd.

 10 is even.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 204

Chapter 62: Generate a random number
How to generate a random number in Ruby.

Section 62.1: 6 Sided die
 # Roll a 6 sided die, rand(6) returns a number from 0 to 5 inclusive
 dice_roll_result = 1 + rand(6)

Section 62.2: Generate a random number from a range
(inclusive)
ruby 1.92
lower_limit = 1
upper_limit = 6
Random.new.rand(lower_limit..upper_limit) # Change your range operator to suit your needs

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 205

Chapter 63: Getting started with Hanami
My mission here is to contribute with the community to help new people who wants to learn about this amazing
framework - Hanami.

But how it is going to work?

Short and easygoing tutorials showing with examples about Hanami and following the next tutorials we will see
how to test our application and build a simple REST API.

Let's start!

Section 63.1: About Hanami
Besides Hanami be a lightweight and fast framework one of the points that most call attention is the Clean
Architecture concept where shows to us that the framework is not our application as Robert Martin said before.

Hanami arquitecture design offer to us the use of Container, in each Container we have our application
independently of the framework. This means that we can grab our code and put it into a Rails framework for
example.

Hanami is a MVC Framework?

The MVC's frameworks idea is to build one structure following the Model -> Controller -> View. Hanami follows the
Model | Controller -> View -> Template. The result is an application more uncopled, following SOLID principles, and
much cleaner.

- Important links.

Hanami http://hanamirb.org/

Robert Martin - Clean Arquitecture https://www.youtube.com/watch?v=WpkDN78P884

Clean Arquitecture https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html

SOLID Principles http://practicingruby.com/articles/solid-design-principles

Section 63.2: How to install Hanami?
Step 1: Installing the Hanami gem.

 $ gem install hanami

Step 2: Generate a new project setting RSpec as testing framework.

Open up a command line or terminal. To generate a new hanami application, use hanami new followed by
the name of your app and the rspec test param.

 $ hanami new "myapp" --test=rspec

Obs. By default Hanami sets Minitest as testing framework.

http://hanamirb.org/
https://www.youtube.com/watch?v=WpkDN78P884
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
http://practicingruby.com/articles/solid-design-principles
https://github.com/rspec/rspec
https://github.com/seattlerb/minitest
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 206

This will create a hanami application called myapp in a myapp directory and install the gem dependencies that are
already mentioned in Gemfile using bundle install.

To switch to this directory, use the cd command, which stands for change directory.

$ cd my_app
$ bundle install

The myapp directory has a number of auto-generated files and folders that make up the structure of a Hanami
application. Following is a list of files and folders that are created by default:

Gemfile defines our Rubygems dependencies (using Bundler).

Rakefile describes our Rake tasks.

apps contains one or more web applications compatible with Rack. Here we can find the first generated
Hanami application called Web. It's the place where we find our controllers, views, routes and templates.

config contains configuration files.

config.ru is for Rack servers.

db contains our database schema and migrations.

lib contains our business logic and domain model, including entities and repositories.

public will contain compiled static assets.

spec contains our tests.

Important links.

Hanami gem https://github.com/hanami/hanami

Hanami official Getting Started http://hanamirb.org/guides/getting-started/

Section 63.3: How to start the server?
Step 1: To start the server just type the command bellow then you'll see the start page.

 $ bundle exec hanami server

https://github.com/hanami/hanami
http://hanamirb.org/guides/getting-started/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 207

https://i.stack.imgur.com/RCBWx.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 208

Chapter 64: OptionParser
OptionParser can be used for parsing command line options from ARGV.

Section 64.1: Mandatory and optional command line options
It's relatively easy to parse the command line by hand if you aren't looking for anything too complex:

Naive error checking
abort('Usage: ' + $0 + ' site id ...') unless ARGV.length >= 2

First item (site) is mandatory
site = ARGV.shift

ARGV.each do | id |
 # Do something interesting with each of the ids
end

But when your options start to get more complicated, you probably will need to use an option parser such as, well,
OptionParser:

require 'optparse'

The actual options will be stored in this hash
options = {}

Set up the options you are looking for
optparse = OptionParser.new do |opts|
 opts.banner = "Usage: #{$0} -s NAME id ..."

 opts.on("-s", "--site NAME", "Site name") do |s|
 options[:site] = s
 end

 opts.on('-h', '--help', 'Display this screen') do
 puts opts
 exit
 end
end

The parse! method also removes any options it finds from ARGV.
optparse.parse!

There's also a non-destructive parse, but it's a lot less useful if you plan on using the remainder of what's in ARGV.

The OptionParser class doesn't have a way to enforce mandatory arguments (such as --site in this case). However
you can do you own checking after running parse!:

Slightly more sophisticated error checking
if options[:site].nil? or ARGV.length == 0
 abort(optparse.help)
end

For a more generic mandatory option handler, see this answer. In case it isn't clear, all options are optional unless
you go out of your way to make them mandatory.

https://docs.ruby-lang.org/en/2.1.0/OptionParser.html
https://docs.ruby-lang.org/en/2.1.0/OptionParser.html
http://stackoverflow.com/a/2149183/7948068
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 209

Section 64.2: Default values
With OptionsParser, it's really easy to set up default values. Just pre-populate the hash you store the options in:

options = {
 :directory => ENV['HOME']
}

When you define the parser, it will overwrite the default if a user provide a value:

OptionParser.new do |opts|
 opts.on("-d", "--directory HOME", "Directory to use") do |d|
 options[:directory] = d
 end
end

Section 64.3: Long descriptions
Sometimes your description can get rather long. For instance irb -h lists on argument that reads:

 --context-mode n Set n[0-3] to method to create Binding Object,
 when new workspace was created

It's not immediately clear how to support this. Most solutions require adjusting to make the indentation of the
second and following lines align to the first. Fortunately, the on method supports multiple description lines by
adding them as separate arguments:

 opts.on("--context-mode n",
 "Set n[0-3] to method to create Binding Object,",
 "when new workspace was created") do |n|
 optons[:context_mode] = n
 end

You can add as many description lines as you like to fully explain the option.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 210

Chapter 65: Operating System or Shell
commands
There are many ways to interact with the operating system. From within Ruby you can run shell/system commands
or sub-processes.

Section 65.1: Recommended ways to execute shell code in
Ruby:
Open3.popen3 or Open3.capture3:
Open3 actually just uses Ruby's spawn command, but gives you a much better API.

Open3.popen3

Popen3 runs in a sub-process and returns stdin, stdout, stderr and wait_thr.

require 'open3'
stdin, stdout, stderr, wait_thr = Open3.popen3("sleep 5s && ls")
puts "#{stdout.read} #{stderr.read} #{wait_thr.value.exitstatus}"

or

require 'open3'
cmd = 'git push heroku master'
Open3.popen3(cmd) do |stdin, stdout, stderr, wait_thr|
 puts "stdout is:" + stdout.read
 puts "stderr is:" + stderr.read
end

will output: stdout is: stderr is:fatal: Not a git repository (or any of the parent directories): .git

or

require 'open3'
cmd = 'ping www.google.com'
Open3.popen3(cmd) do |stdin, stdout, stderr, wait_thr|
 while line = stdout.gets
 puts line
 end
end

will output:

Pinging www.google.com [216.58.223.36] with 32 bytes of data:
Reply from 216.58.223.36: bytes=32 time=16ms TTL=54
Reply from 216.58.223.36: bytes=32 time=10ms TTL=54
Reply from 216.58.223.36: bytes=32 time=21ms TTL=54
Reply from 216.58.223.36: bytes=32 time=29ms TTL=54
Ping statistics for 216.58.223.36:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 10ms, Maximum = 29ms, Average = 19ms

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 211

Open3.capture3:

require 'open3'

stdout, stderr, status = Open3.capture3('my_funky_command', 'and', 'some', 'argumants')
if status.success?
 # command completed successfully, do some more stuff
else
 raise "An error occurred"
end

or

Open3.capture3('/some/binary with some args')

Not recommended though, due to additional overhead and the potential for shell injections.

If the command reads from stdin and you want to feed it some data:

Open3.capture3('my_funky_command', stdin_data: 'read from stdin')

Run the command with a different working directory, by using chdir:

Open3.capture3('my_funky_command', chdir: '/some/directory')

Section 65.2: Clasic ways to execute shell code in Ruby:
Exec:

exec 'echo "hello world"'

or

exec ('echo "hello world"')

The System Command:

system 'echo "hello world"'

Will output "hello world" in the command window.

or

system ('echo "hello world"')

The system command can return a true if the command was successful or nill when not.

result = system 'echo "hello world"'
puts result # will return a true in the command window

The backticks (`):

echo "hello world" Will output "hello world" in the command window.

You can also catch the result.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 212

result = `echo "hello world"`
puts "We always code a " + result

IO.popen:

Will get and return the current date from the system
IO.popen("date") { |f| puts f.gets }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 213

Chapter 66: C Extensions
Section 66.1: Your first extension
C extensions are comprised of two general pieces:

The C Code itself.1.
The extension configuration file.2.

To get started with your first extension put the following in a file named extconf.rb:

require 'mkmf'

create_makefile('hello_c')

A couple of things to point out:

First, the name hello_c is what the output of your compiled extension is going to be named. It will be what you use
in conjunction with require.

Second, the extconf.rb file can actually be named anything, it's just traditionally what is used to build gems that
have native code, the file that is actually going to compile the extension is the Makefile generated when running
ruby extconf.rb. The default Makefile that is generated compiles all .c files in the current directory.

Put the following in a file named hello.c and run ruby extconf.rb && make

#include <stdio.h>
#include "ruby.h"

VALUE world(VALUE self) {
 printf("Hello World!\n");
 return Qnil;
}

// The initialization method for this module
void Init_hello_c() {
 VALUE HelloC = rb_define_module("HelloC");
 rb_define_singleton_method(HelloC, "world", world, 0);
}

A breakdown of the code:

The name Init_hello_c must match the name defined in your extconf.rb file, otherwise when dynamically
loading the extension, Ruby won't be able to find the symbol to bootstrap your extension.

The call to rb_define_module is creating a Ruby module named HelloC which we're going to namespace our C
functions under.

Finally, the call to rb_define_singleton_method makes a module level method tied directly to the HelloC module
which we can invoke from ruby with HelloC.world.

After having compiled the extension with the call to make we can run the code in our C extension.

Fire up a console!

irb(main):001:0> require './hello_c'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 214

=> true
irb(main):002:0> HelloC.world
Hello World!
=> nil

Section 66.2: Working with C Structs
In order to be able to work with C structs as Ruby objects, you need to wrap them with calls to Data_Wrap_Struct
and Data_Get_Struct.

Data_Wrap_Struct wraps a C data structure in a Ruby object. It takes a pointer to your data structure, along with a
few pointers to callback functions, and returns a VALUE. The Data_Get_Struct macro takes that VALUE and gives
you back a pointer to your C data structure.

Here's a simple example:

#include <stdio.h>
#include <ruby.h>

typedef struct example_struct {
 char *name;
} example_struct;

void example_struct_free(example_struct * self) {
 if (self->name != NULL) {
 free(self->name);
 }
 ruby_xfree(self);
}

static VALUE rb_example_struct_alloc(VALUE klass) {
 return Data_Wrap_Struct(klass, NULL, example_struct_free, ruby_xmalloc(sizeof(example_struct)));
}

static VALUE rb_example_struct_init(VALUE self, VALUE name) {
 example_struct* p;

 Check_Type(name, T_STRING);

 Data_Get_Struct(self, example_struct, p);
 p->name = (char *)malloc(RSTRING_LEN(name) + 1);
 memcpy(p->name, StringValuePtr(name), RSTRING_LEN(name) + 1);

 return self;
}

static VALUE rb_example_struct_name(VALUE self) {
 example_struct* p;
 Data_Get_Struct(self, example_struct, p);

 printf("%s\n", p->name);

 return Qnil;
}

void Init_example()
{
 VALUE mExample = rb_define_module("Example");
 VALUE cStruct = rb_define_class_under(mExample, "Struct", rb_cObject);

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 215

 rb_define_alloc_func(cStruct, rb_example_struct_alloc);
 rb_define_method(cStruct, "initialize", rb_example_struct_init, 1);
 rb_define_method(cStruct, "name", rb_example_struct_name, 0);
}

And the extconf.rb:

require 'mkmf'

create_makefile('example')

After compiling the extension:

irb(main):001:0> require './example'
=> true
irb(main):002:0> test_struct = Example::Struct.new("Test Struct")
=> #<Example::Struct:0x007fc741965068>
irb(main):003:0> test_struct.name
Test Struct
=> nil

Section 66.3: Writing Inline C - RubyInLine
RubyInline is a framework that lets you embed other languages inside your Ruby code. It defines the Module#
inline method, which returns a builder object. You pass the builder a string containing code written in a language
other than Ruby, and the builder transforms it into something that you can call from Ruby.

When given C or C++ code (the two languages supported in the default RubyInline install), the builder objects writes
a small extension to disk, compiles it, and loads it. You don't have to deal with the compilation yourself, but you can
see the generated code and compiled extensions in the .ruby_inline subdirectory of your home directory.

Embed C code right in your Ruby program:

RubyInline (available as the rubyinline gem) create an extension automatically

RubyInline won't work from within irb

#!/usr/bin/ruby -w
 # copy.rb
 require 'rubygems'
 require 'inline'

 class Copier
 inline do |builder|
 builder.c <<END
 void copy_file(const char *source, const char *dest)
 {
 FILE *source_f = fopen(source, "r");
 if (!source_f)
 {
 rb_raise(rb_eIOError, "Could not open source : '%s'", source);
 }

 FILE *dest_f = fopen(dest, "w+");
 if (!dest_f)
 {

https://rubygems.org/gems/RubyInline/versions/3.12.4
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 216

 rb_raise(rb_eIOError, "Could not open destination : '%s'", dest);
 }

 char buffer[1024];

 int nread = fread(buffer, 1, 1024, source_f);
 while (nread > 0)
 {
 fwrite(buffer, 1, nread, dest_f);
 nread = fread(buffer, 1, 1024, source_f);
 }
 }
 END
 end
 end

C function copy_file now exists as an instance method of Copier:

open('source.txt', 'w') { |f| f << 'Some text.' }
Copier.new.copy_file('source.txt', 'dest.txt')
puts open('dest.txt') { |f| f.read }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 217

Chapter 67: Debugging
Section 67.1: Stepping through code with Pry and Byebug
First, you need to install pry-byebug gem. Run this command:

$ gem install pry-byebug

Add this line at the top of your .rb file:

require 'pry-byebug'

Then insert this line wherever you want a breakpoint:

binding.pry

A hello.rb example:

require 'pry-byebug'

def hello_world
 puts "Hello"
 binding.pry # break point here
 puts "World"
end

When you run the hello.rb file, the program will pause at that line. You can then step through your code with the
step command. Type a variable's name to learn its value. Exit the debugger with exit-program or !!!.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 218

Chapter 68: Ruby Version Manager
Section 68.1: How to create gemset
To create a gemset we need to create a .rvmrc file.

Syntax:

 $ rvm --rvmrc --create <ruby-version>@<gemsetname>

Example:

 $ rvm --rvmrc --create ruby-2.2.2@myblog

The above line will create a .rvmrc file in the root directory of the app.

To get the list of available gemsets, use the following command:

 $ rvm list gemsets

Section 68.2: Installing Ruby with RVM
The Ruby Version Manager is a command line tool to simply install and manage different versions of Ruby.

rvm istall 2.3.1 for example installs Ruby version 2.3.1 on your machine.

With rvm list you can see which versions are installed and which is actually set for use.

 user@dev:~$ rvm list

 rvm rubies

 =* ruby-2.3.1 [x86_64]

 # => - current
 # =* - current && default
 # * - default

With rvm use 2.3.0 you can change between installed versions.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 219

Appendix A: Installation
Section A.1: Installing Ruby macOS
So the good news is that Apple kindly includes a Ruby interpreter. Unfortunately, it tends not to be a recent version:

$ /usr/bin/ruby -v
ruby 2.0.0p648 (2015-12-16 revision 53162) [universal.x86_64-darwin16]

If you have Homebrew installed, you can get the latest Ruby with:

$ brew install ruby

$ /usr/local/bin/ruby -v
ruby 2.4.1p111 (2017-03-22 revision 58053) [x86_64-darwin16]

(It's likely you'll see a more recent version if you try this.)

In order to pick up the brewed version without using the full path, you'll want to add /usr/local/bin to the start of
your $PATH environment variable:

export PATH=/usr/local/bin:$PATH

Adding that line to ~/.bash_profile ensures that you will get this version after you restart your system:

$ type ruby
ruby is /usr/local/bin/ruby

Homebrew will install gem for installing Gems. It's also possible to build from the source if you need that. Homebrew
also includes that option:

$ brew install ruby --build-from-source

Section A.2: Gems
In this example we will use 'nokogiri' as an example gem. 'nokogiri' can later on be replaced by any other gem
name.

To work with gems we use a command line tool called gem followed by an option like install or update and then
names of the gems we want to install, but that is not all.

Install gems:

$> gem install nokogiri

But that is not the only thing we need. We can also specify version, source from which to install or search for gems.
Lets start with some basic use cases (UC) and you can later on post request for an update.

Listing all the installed gems:

$> gem list

Uninstalling gems:

https://brew.sh/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 220

$> gem uninstall nokogiri

If we have more version of the nokogiri gem we will be prompted to specify which one we want to uninstall. We will
get a list that is ordered and numbered and we just write the number.

Updating gems

$> gem update nokogiri

or if we want to update them all

$> gem update

Comman gem has many more usages and options to be explored. For more please turn to the official
documentation. If something is not clear post a request and I will add it.

Section A.3: Linux - Compiling from source
`This way you will get the newest ruby but it has its downsides. Doing it like this ruby will not be managed by any
application.

!! Remember to chagne the version so it coresponds with your !!

you need to download a tarball find a link on an official website (https://www.ruby-lang.org/en/downloads/)1.
Extract the tarball2.
Install3.

$> wget https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.3.tar.gz
$> tar -xvzf ruby-2.3.3.tar.gz
$> cd ruby-2.3.3
$> ./configure
$> make
$> sudo make install

This will install ruby into /usr/local. If you are not happy with this location you can pass an argument to the
./configure --prefix=DIR where DIR is the directory you want to install ruby to.

Section A.4: Linux—Installation using a package manager
Probably the easiest choice, but beware, the version is not always the newest one. Just open up terminal and type
(depending on your distribution)

in Debian or Ubuntu using apt

$> sudo apt install ruby

in CentOS, openSUSE or Fedora

$> sudo yum install ruby

You can use the -y option so you are not prompted to agree with the installation but in my opinion it is a good
practice to always check what is the package manager trying to install.

https://www.ruby-lang.org/en/downloads/)
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 221

Section A.5: Windows - Installation using installer
Probably the easies way to set up ruby on windows is to go to http://rubyinstaller.org/ and from there donwload an
executable that you will install.

You don't have to set almost anything, but there will be one important window. It will have a check box saying Add
ruby executable to your PATH. Confirm that it is checked, if not check it or else you won't be able to run ruby and will
have to set the PATH variable on your own.

Then just go next until it installs and thats that.

Section A.6: Linux - troubleshooting gem install
First UC in the example Gems $> gem install nokogiri can have a problem installing gems because we don't
have the permissions for it. This can be sorted out in more then just one way.

First UC solution a:

U can use sudo. This will install the gem for all the users. This method should be frowned upon. This should be used
only with the gem you know will be usable by all the users. Usualy in real life you don't want some user having
access to sudo.

$> sudo gem install nokogiri

First UC solution b

U can use the option --user-install which installs the gems into your users gem folder (usualy at ~/.gem)

&> gem install nokogiri --user-install

First UC solution c

U can set GEM_HOME and GEM_PATH wich then will make command gem install install all the gems to a folder
which you specify. I can give you an example of that (the usual way)

First of all you need to open .bashrc. Use nano or your favorite text editor.

$> nano ~/.bashrc

Then at the end of this file write

export GEM_HOME=$HOME/.gem
export GEM_PATH=$HOME/.gem

Now you will need to restart terminal or write . ~/.bashrc to re-load the configuration. This will enable you
to use gem isntall nokogiri and it will install those gems in the folder you specified.

http://rubyinstaller.org/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 222

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

Abdullah Chapters 11 and 22
Adam Sanderson Chapter 18
Addison Chapter 28
AJ Gregory Chapter 11
Ajedi32 Chapter 9
alebruck Chapter 9
alexunger Chapters 14 and 31
Ali MasudianPour Chapter 31
Alu Chapters 40 and 68
amingilani Chapter 61
Andrea Mazzarella Chapter 9
Andrew Chapter 55
angelparras Chapter 17
Anthony Staunton Chapter 44
Arman Jon Villalobos Chapter 19
ArtOfCode Chapter 3
Artur Tsuda Chapters 15 and 27
Arun Kumar M Chapter 15
Atul Khanduri Chapter 19
Austin Vern Songer Chapters 33, 47 and 66
Automatico Chapter 9
br3nt Chapters 9, 11, 17, 18, 20, 25 and 26
C dot StrifeVII Chapters 19 and 49
CalmBit Chapter 1
Charan Kumar Borra Chapter 21
Charlie Egan Chapters 11 and 19
Chris Chapter 21
Christoph Petschnig Chapter 19
Christopher Oezbek Chapter 19
coreyward Chapter 20
D Chapters 9 and 17
daniero Chapters 9 and 17
DarKy Chapter 17
Darpan Chhatravala Chapter 1
David Grayson Chapters 1, 9, 11, 17, 19 and 60
David Ljung Madison Chapter 18
davidhu2000 Chapters 9, 11 and 25
DawnPaladin Chapters 1, 9, 34 and 67
Dimitry_N Chapter 17
Divya Sharma Chapter 31
divyum Chapter 19
djaszczurowski Chapter 31
Doodad Chapter 29
Dorian Chapter 37
Elenian Chapters 17, 25 and 28
Eli Sadoff Chapters 9, 14, 20, 21 and 59
engineersmnky Chapter 20

mailto:web@petercv.com
https://stackoverflow.com/users/4089357/
https://stackoverflow.com/users/2384284/
https://stackoverflow.com/users/1525759/
https://stackoverflow.com/users/3953760/
https://stackoverflow.com/users/1157054/
https://stackoverflow.com/users/812749/
https://stackoverflow.com/users/2295410/
https://stackoverflow.com/users/713916/
https://stackoverflow.com/users/4256535/
https://stackoverflow.com/users/3970701/
https://stackoverflow.com/users/5771228/
https://stackoverflow.com/users/417872/
https://stackoverflow.com/users/4381234/
https://stackoverflow.com/users/6619998/
https://stackoverflow.com/users/4759544/
https://stackoverflow.com/users/3160466/
https://stackoverflow.com/users/5888368/
https://stackoverflow.com/users/2219557/
https://stackoverflow.com/users/2945616/
https://stackoverflow.com/users/3667165/
https://stackoverflow.com/users/741850/
https://stackoverflow.com/users/848668/
https://stackoverflow.com/users/1877683/
https://stackoverflow.com/users/1626606/
https://stackoverflow.com/users/1922399/
https://stackoverflow.com/users/1510063/
https://stackoverflow.com/users/4293498/
https://stackoverflow.com/users/348987/
https://stackoverflow.com/users/278842/
https://stackoverflow.com/users/203130/
https://stackoverflow.com/users/2076787/
https://stackoverflow.com/users/1373657/
https://stackoverflow.com/users/2842278/
https://stackoverflow.com/users/6318514/
https://stackoverflow.com/users/28128/
https://stackoverflow.com/users/1795483/
https://stackoverflow.com/users/6496010/
https://stackoverflow.com/users/1805453/
https://stackoverflow.com/users/3284936/
https://stackoverflow.com/users/5949678/
https://stackoverflow.com/users/3426684/
https://stackoverflow.com/users/4271125/
https://stackoverflow.com/users/2576857/
https://stackoverflow.com/users/407213/
https://stackoverflow.com/users/3832338/
https://stackoverflow.com/users/5021321/
https://stackoverflow.com/users/1978251/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 223

Engr. Hasanuzzaman
Sumon Chapters 6 and 36

equivalent8 Chapter 41
Francesco Boffa Chapter 10
Francesco Lupo Renzi Chapters 9 and 17
G. Allen Morris III Chapter 19
Gaelan Chapter 26
Geoffroy Chapter 45
gorn Chapter 19
Hardik Kanjariya ツ Chapter 68
iGbanam Chapter 9
iltempo Chapter 19
Inanc Gumus Chapter 44
iturgeon Chapter 22
Jasper Chapter 20
Jeweller Chapter 19
JoeyB Chapters 17 and 25
Jon Ericson Chapter 28
Jon Wood Chapter 2
Jonathan Chapter 3
jose_castro_arnaud Chapter 17
joshaidan Chapter 9
Justin Chadwell Chapter 25
kamaradclimber Chapter 22
Kathryn Chapters 11, 17, 18, 19, 38, 39, 43, 64 and 69
Katsuhiko Yoshida Chapter 9
Kirti Thorat Chapter 26
kleaver Chapter 19
knut Chapters 1 and 9
Koraktor Chapter 19
Kris Chapter 19
Lahiru Chapter 17
Lomefin Chapter 22
Lucas Costa Chapters 1, 5, 9, 11, 13, 19, 22 and 31
Lukas Baliak Chapters 9, 19, 20 and 22
lwassink Chapter 9
Lynn Chapter 35
mahatmanich Chapter 18
manasouza Chapter 42
Marc Chapter 20
Martin Velez Chapters 1, 19, 25 and 29
Masa Sakano Chapter 9
Matheus Moreira Chapters 4, 23, 45, 48, 49, 50 and 51
Mauricio Junior Chapter 63
max pleaner Chapters 29 and 57
Maxim Fedotov Chapters 33 and 60
Maxim Pontyushenko Chapter 21
meagar Chapters 2, 9, 11, 17, 19 and 20
MegaTom Chapters 13, 21, 25, 26, 33, 35, 45 and 56
meta Chapter 49
Mhmd Chapters 2, 9, 19, 20 and 25
Michael Gaskill Chapter 17
Michael Kuhinica Chapters 19 and 22

https://stackoverflow.com/users/2578693/
https://stackoverflow.com/users/2578693/
https://stackoverflow.com/users/473040/
https://stackoverflow.com/users/720254/
https://stackoverflow.com/users/2454151/
https://stackoverflow.com/users/1169785/
https://stackoverflow.com/users/1629243/
https://stackoverflow.com/users/610351/
https://stackoverflow.com/users/313522/
https://stackoverflow.com/users/4423221/
https://stackoverflow.com/users/4423221/
https://stackoverflow.com/users/393021/
https://stackoverflow.com/users/428260/
https://stackoverflow.com/users/115363/
https://stackoverflow.com/users/631508/
https://stackoverflow.com/users/261006/
https://stackoverflow.com/users/1232497/
https://stackoverflow.com/users/5425630/
https://stackoverflow.com/users/1438/
https://stackoverflow.com/users/25258/
https://stackoverflow.com/users/1772/
https://stackoverflow.com/users/5606343/
https://stackoverflow.com/users/352360/
https://stackoverflow.com/users/6848834/
https://stackoverflow.com/users/277527/
https://stackoverflow.com/users/7948068/
https://stackoverflow.com/users/3929489/
https://stackoverflow.com/users/1012097/
https://stackoverflow.com/users/4139603/
https://stackoverflow.com/users/676874/
https://stackoverflow.com/users/81071/
https://stackoverflow.com/users/22237/
https://stackoverflow.com/users/1616697/
https://stackoverflow.com/users/652779/
https://stackoverflow.com/users/2100645/
https://stackoverflow.com/users/2862049/
https://stackoverflow.com/users/2923846/
https://stackoverflow.com/users/369401/
https://stackoverflow.com/users/316408/
https://stackoverflow.com/users/1119153/
https://stackoverflow.com/users/2115680/
https://stackoverflow.com/users/295249/
https://stackoverflow.com/users/3577922/
https://stackoverflow.com/users/512904/
https://stackoverflow.com/users/7685083/
https://stackoverflow.com/users/2981429/
https://stackoverflow.com/users/2308531/
https://stackoverflow.com/users/4470392/
https://stackoverflow.com/users/229044/
https://stackoverflow.com/users/3990897/
https://stackoverflow.com/users/299774/
https://stackoverflow.com/users/4145941/
https://stackoverflow.com/users/2577852/
https://stackoverflow.com/users/317908/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 224

Mike H Chapter 9
Milo P Chapter 29
mlabarca Chapter 26
moertel Chapters 17, 19, 22 and 33
mrcasals Chapter 35
mrlee Chapter 19
MrTheWalrus Chapter 9
mudasobwa Chapter 28
MZaragoza Chapter 19
Nakilon Chapter 2
NateSHolland Chapter 44
NateW Chapter 11
ndn Chapters 14, 16, 17 and 21
Neha Chopra Chapters 24 and 30
neontapir Chapter 19
New Alexandria Chapter 19
Nic Hartley Chapter 20
Nic Nilov Chapter 19
Nick Roz Chapters 9, 11, 17, 19, 21, 25 and 28
Ninigi Chapter 4
Nuno Silva Chapter 29
nus Chapters 3, 18, 19, 20, 26, 32, 35 and 45
ogirginc Chapter 67
Old Pro Chapter 19
Owen Chapter 15
Ozgur Akyazi Chapter 21
Pablo Torrecilla Chapters 9 and 17
paradoja Chapter 37
peter Chapter 28
philomory Chapter 25
photoionized Chapter 66
Phrogz Chapters 3, 50 and 56
pjam Chapter 19
pjrebsch Chapter 15
PJSCopeland Chapter 19
Pooyan Khosravi Chapters 45, 46, 50 and 52
Pragash Chapter 26
Rahul Singh Chapters 8 and 34
Redithion Chapters 7, 12, 14 and 18
Richard Hamilton Chapters 9, 11 and 14
Roan Fourie Chapter 65
Robert Columbia Chapter 22
russt Chapter 17
Sagar Pandya Chapter 9
SajithP Chapters 21 and 38
Saroj Sasmal Chapter 9
Saša Zejnilović Chapters 44 and 69
Scudelletti Chapter 28
Sean Redmond Chapter 58
Shadoath Chapter 9
Shelvacu Chapter 28
Sid Chapters 11 and 19
SidOfc Chapter 44

https://stackoverflow.com/users/966097/
https://stackoverflow.com/users/2917523/
https://stackoverflow.com/users/2509777/
https://stackoverflow.com/users/3405140/
https://stackoverflow.com/users/2110884/
https://stackoverflow.com/users/818057/
https://stackoverflow.com/users/763096/
https://stackoverflow.com/users/2035262/
https://stackoverflow.com/users/1380867/
https://stackoverflow.com/users/322020/
https://stackoverflow.com/users/1415546/
https://stackoverflow.com/users/2529285/
https://stackoverflow.com/users/2423164/
https://stackoverflow.com/users/7734948/
https://stackoverflow.com/users/45816/
https://stackoverflow.com/users/263858/
https://stackoverflow.com/users/1863564/
https://stackoverflow.com/users/2116518/
https://stackoverflow.com/users/4175647/
https://stackoverflow.com/users/3232523/
https://stackoverflow.com/users/1392282/
https://stackoverflow.com/users/1115652/
https://stackoverflow.com/users/4565485/
https://stackoverflow.com/users/712765/
https://stackoverflow.com/users/2833161/
https://stackoverflow.com/users/4399654/
https://stackoverflow.com/users/657416/
https://stackoverflow.com/users/18396/
https://stackoverflow.com/users/923315/
https://stackoverflow.com/users/1246279/
https://stackoverflow.com/users/681679/
https://stackoverflow.com/users/405017/
https://stackoverflow.com/users/919641/
https://stackoverflow.com/users/1454953/
https://stackoverflow.com/users/1157242/
https://stackoverflow.com/users/2647317/
https://stackoverflow.com/users/1621998/
https://stackoverflow.com/users/1715409/
https://stackoverflow.com/users/1423901/
https://stackoverflow.com/users/4703663/
https://stackoverflow.com/users/5184993/
https://stackoverflow.com/users/6471538/
https://stackoverflow.com/users/708369/
https://stackoverflow.com/users/5101493/
https://stackoverflow.com/users/3073378/
https://stackoverflow.com/users/5293076/
https://stackoverflow.com/users/5594180/
https://stackoverflow.com/users/5594180/
https://stackoverflow.com/users/5594180/
https://stackoverflow.com/users/5594180/
https://stackoverflow.com/users/1464792/
https://stackoverflow.com/users/131226/
https://stackoverflow.com/users/1418337/
https://stackoverflow.com/users/1267729/
https://stackoverflow.com/users/4143605/
https://stackoverflow.com/users/2224331/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® Notes for Professionals 225

Simon Soriano Chapter 49
Simone Carletti Chapters 1, 11, 14, 15, 18, 19, 22, 25 and 53
snonov Chapter 5
Sourabh Upadhyay Chapter 49
spencer.sm Chapter 25
squadette Chapter 9
Steve Chapters 1 and 17
stevendaniels Chapters 13, 19, 25 and 58
suhao399 Chapter 36
Surya Chapter 33
thesecretmaster Chapter 42
Tom Harrison Jr Chapters 3 and 27
Tom Lord Chapters 9, 14, 17, 19 and 44
Tot Zam Chapter 1
Umang Raghuvanshi Chapter 54
user1213904 Chapter 31
user1489580 Chapter 44
user1821961 Chapter 62
user2367593 Chapter 6
Vasfed Chapters 11, 26 and 35
Ven Chapters 17 and 19
vgoff Chapter 17
Vidur Chapter 43
Vishnu Y S Chapter 1
wirefox Chapters 14 and 19
wjordan Chapter 11
xavdid Chapter 57
Yonatha Almeida Chapter 34
Yule Chapters 17 and 27
Zaz Chapters 18 and 47

https://stackoverflow.com/users/3303182/
https://stackoverflow.com/users/123527/
https://stackoverflow.com/users/6634242/
https://stackoverflow.com/users/3170288/
https://stackoverflow.com/users/3498950/
https://stackoverflow.com/users/7754/
https://stackoverflow.com/users/1818469/
https://stackoverflow.com/users/515674/
https://stackoverflow.com/users/5423827/
https://stackoverflow.com/users/645886/
https://stackoverflow.com/users/4948732/
https://stackoverflow.com/users/414127/
https://stackoverflow.com/users/1954610/
https://stackoverflow.com/users/4660897/
https://stackoverflow.com/users/5155665/
https://stackoverflow.com/users/1213904/
https://stackoverflow.com/users/1489580/
https://stackoverflow.com/users/1821961/
https://stackoverflow.com/users/2367593/
https://stackoverflow.com/users/177053/
https://stackoverflow.com/users/1737909/
https://stackoverflow.com/users/485864/
https://stackoverflow.com/users/834459/
https://stackoverflow.com/users/5097563/
https://stackoverflow.com/users/6598100/
https://stackoverflow.com/users/2518355/
https://stackoverflow.com/users/1825390/
https://stackoverflow.com/users/7862796/
https://stackoverflow.com/users/671422/
https://stackoverflow.com/users/405550/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

You may also like

https://goalkicker.com/CBook
https://goalkicker.com/CSharpBook
https://goalkicker.com/CPlusPlusBook
https://goalkicker.com/JavaBook
https://goalkicker.com/JavaScriptBook
https://goalkicker.com/PerlBook
https://goalkicker.com/PHPBook
https://goalkicker.com/PythonBook
https://goalkicker.com/SQLBook

	Content list
	About
	Chapter 1: Getting started with Ruby Language
	Section 1.1: Hello World
	Section 1.2: Hello World as a Self-Executable File—using Shebang (Unix-like operating systems only)
	Section 1.3: Hello World from IRB
	Section 1.4: Hello World without source ﬁles
	Section 1.5: Hello World with tk
	Section 1.6: My First Method

	Chapter 2: Casting (type conversion)
	Section 2.1: Casting to a Float
	Section 2.2: Casting to a String
	Section 2.3: Casting to an Integer
	Section 2.4: Floats and Integers

	Chapter 3: Operators
	Section 3.1: Operator Precedence and Methods
	Section 3.2: Case equality operator (===)
	Section 3.3: Safe Navigation Operator
	Section 3.4: Assignment Operators
	Section 3.5: Comparison Operators

	Chapter 4: Variable Scope and Visibility
	Section 4.1: Class Variables
	Section 4.2: Local Variables
	Section 4.3: Global Variables
	Section 4.4: Instance Variables

	Chapter 5: Environment Variables
	Section 5.1: Sample to get user proﬁle path

	Chapter 6: Constants
	Section 6.1: Deﬁne a constant
	Section 6.2: Modify a Constant
	Section 6.3: Constants cannot be deﬁned in methods
	Section 6.4: Deﬁne and change constants in a class

	Chapter 7: Special Constants in Ruby
	Section 7.1: __FILE__
	Section 7.2: __dir__
	Section 7.3: $PROGRAM_NAME or $0
	Section 7.4: $$
	Section 7.5: $1, $2, etc
	Section 7.6: ARGV or $*
	Section 7.7: STDIN
	Section 7.8: STDOUT
	Section 7.9: STDERR
	Section 7.10: $stderr
	Section 7.11: $stdout
	Section 7.12: $stdin
	Section 7.13: ENV

	Chapter 8: Comments
	Section 8.1: Single & Multiple line comments

	Chapter 9: Arrays
	Section 9.1: Create Array of Strings
	Section 9.2: Create Array with Array::new
	Section 9.3: Create Array of Symbols
	Section 9.4: Manipulating Array Elements
	Section 9.5: Accessing elements
	Section 9.6: Creating an Array with the literal constructor []
	Section 9.7: Decomposition
	Section 9.8: Arrays union, intersection and dierence
	Section 9.9: Remove all nil elements from an array with #compact
	Section 9.10: Get all combinations / permutations of an array
	Section 9.11: Inject, reduce
	Section 9.12: Filtering arrays
	Section 9.13: #map
	Section 9.14: Arrays and the splat (*) operator
	Section 9.15: Two-dimensional array
	Section 9.16: Turn multi-dimensional array into a one-dimensional (ﬂattened) array
	Section 9.17: Get unique array elements
	Section 9.18: Create Array of numbers
	Section 9.19: Create an Array of consecutive numbers or letters
	Section 9.20: Cast to Array from any object

	Chapter 10: Multidimensional Arrays
	Section 10.1: Initializing a 2D array
	Section 10.2: Initializing a 3D array
	Section 10.3: Accessing a nested array
	Section 10.4: Array ﬂattening

	Chapter 11: Strings
	Section 11.1: Dierence between single-quoted and double-quoted String literals
	Section 11.2: Creating a String
	Section 11.3: Case manipulation
	Section 11.4: String concatenation
	Section 11.5: Positioning strings
	Section 11.6: Splitting a String
	Section 11.7: String starts with
	Section 11.8: Joining Strings
	Section 11.9: String interpolation
	Section 11.10: String ends with
	Section 11.11: Formatted strings
	Section 11.12: String Substitution
	Section 11.13: Multiline strings
	Section 11.14: String character replacements
	Section 11.15: Understanding the data in a string

	Chapter 12: DateTime
	Section 12.1: DateTime from string
	Section 12.2: New
	Section 12.3: Add/subtract days to DateTime

	Chapter 13: Time
	Section 13.1: How to use the strftime method
	Section 13.2: Creating time objects

	Chapter 14: Numbers
	Section 14.1: Converting a String to Integer
	Section 14.2: Creating an Integer
	Section 14.3: Rounding Numbers
	Section 14.4: Even and Odd Numbers
	Section 14.5: Rational Numbers
	Section 14.6: Complex Numbers
	Section 14.7: Converting a number to a string
	Section 14.8: Dividing two numbers

	Chapter 15: Symbols
	Section 15.1: Creating a Symbol
	Section 15.2: Converting a String to Symbol
	Section 15.3: Converting a Symbol to String

	Chapter 16: Comparable
	Section 16.1: Rectangle comparable by area

	Chapter 17: Control Flow
	Section 17.1: if, elsif, else and end
	Section 17.2: Case statement
	Section 17.3: Truthy and Falsy values
	Section 17.4: Inline if/unless
	Section 17.5: while, until
	Section 17.6: Flip-Flop operator
	Section 17.7: Or-Equals/Conditional assignment operator (||=)
	Section 17.8: unless
	Section 17.9: throw, catch
	Section 17.10: Ternary operator
	Section 17.11: Loop control with break, next, and redo
	Section 17.12: return vs. next: non-local return in a block
	Section 17.13: begin, end
	Section 17.14: Control ﬂow with logic statements

	Chapter 18: Methods
	Section 18.1: Deﬁning a method
	Section 18.2: Yielding to blocks
	Section 18.3: Default parameters
	Section 18.4: Optional parameter(s) (splat operator)
	Section 18.5: Required default optional parameter mix
	Section 18.6: Use a function as a block
	Section 18.7: Single required parameter
	Section 18.8: Tuple Arguments
	Section 18.9: Capturing undeclared keyword arguments (double splat)
	Section 18.10: Multiple required parameters
	Section 18.11: Method Deﬁnitions are Expressions

	Chapter 19: Hashes
	Section 19.1: Creating a hash
	Section 19.2: Setting Default Values
	Section 19.3: Accessing Values
	Section 19.4: Automatically creating a Deep Hash
	Section 19.5: Iterating Over a Hash
	Section 19.6: Filtering hashes
	Section 19.7: Conversion to and from Arrays
	Section 19.8: Overriding hash function
	Section 19.9: Getting all keys or values of hash
	Section 19.10: Modifying keys and values
	Section 19.11: Set Operations on Hashes

	Chapter 20: Blocks and Procs and Lambdas
	Section 20.1: Lambdas
	Section 20.2: Partial Application and Currying
	Section 20.3: Objects as block arguments to methods
	Section 20.4: Converting to Proc
	Section 20.5: Blocks

	Chapter 21: Iteration
	Section 21.1: Each
	Section 21.2: Implementation in a class
	Section 21.3: Iterating over complex objects
	Section 21.4: For iterator
	Section 21.5: Iteration with index
	Section 21.6: Map

	Chapter 22: Exceptions
	Section 22.1: Creating a custom exception type
	Section 22.2: Handling multiple exceptions
	Section 22.3: Handling an exception
	Section 22.4: Raising an exception
	Section 22.5: Adding information to (custom) exceptions

	Chapter 23: Enumerators
	Section 23.1: Custom enumerators
	Section 23.2: Existing methods
	Section 23.3: Rewinding

	Chapter 24: Enumerable in Ruby
	Section 24.1: Enumerable module

	Chapter 25: Classes
	Section 25.1: Constructor
	Section 25.2: Creating a class
	Section 25.3: Access Levels
	Section 25.4: Class Methods types
	Section 25.5: Accessing instance variables with getters and setters
	Section 25.6: New, allocate, and initialize
	Section 25.7: Dynamic class creation
	Section 25.8: Class and instance variables

	Chapter 26: Inheritance
	Section 26.1: Subclasses
	Section 26.2: What is inherited?
	Section 26.3: Multiple Inheritance
	Section 26.4: Mixins
	Section 26.5: Refactoring existing classes to use Inheritance

	Chapter 27: method_missing
	Section 27.1: Catching calls to an undeﬁned method
	Section 27.2: Use with block
	Section 27.3: Use with parameter
	Section 27.4: Using the missing method

	Chapter 28: Regular Expressions and Regex Based Operations
	Section 28.1: =~ operator
	Section 28.2: Regular Expressions in Case Statements
	Section 28.3: Groups, named and otherwise
	Section 28.4: Quantiﬁers
	Section 28.5: Common quick usage
	Section 28.6: match? - Boolean Result
	Section 28.7: Deﬁning a Regexp
	Section 28.8: Character classes

	Chapter 29: File and I/O Operations
	Section 29.1: Writing a string to a ﬁle
	Section 29.2: Reading from STDIN
	Section 29.3: Reading from arguments with ARGV
	Section 29.4: Open and closing a ﬁle
	Section 29.5: get a single char of input

	Chapter 30: Ruby Access Modiﬁers
	Section 30.1: Instance Variables and Class Variables
	Section 30.2: Access Controls

	Chapter 31: Design Patterns and Idioms in Ruby
	Section 31.1: Decorator Pattern
	Section 31.2: Observer
	Section 31.3: Singleton
	Section 31.4: Proxy

	Chapter 32: Loading Source Files
	Section 32.1: Require ﬁles to be loaded only once
	Section 32.2: Automatically loading source ﬁles
	Section 32.3: Loading optional ﬁles
	Section 32.4: Loading ﬁles repeatedly
	Section 32.5: Loading several ﬁles

	Chapter 33: Thread
	Section 33.1: Accessing shared resources
	Section 33.2: Basic Thread Semantics
	Section 33.3: Terminating a Thread
	Section 33.4: How to kill a thread

	Chapter 34: Range
	Section 34.1: Ranges as Sequences
	Section 34.2: Iterating over a range
	Section 34.3: Range between dates

	Chapter 35: Modules
	Section 35.1: A simple mixin with include
	Section 35.2: Modules and Class Composition
	Section 35.3: Module as Namespace
	Section 35.4: A simple mixin with extend

	Chapter 36: Introspection in Ruby
	Section 36.1: Introspection of class
	Section 36.2: Lets see some examples

	Chapter 37: Monkey Patching in Ruby
	Section 37.1: Changing an existing ruby method
	Section 37.2: Monkey patching a class
	Section 37.3: Monkey patching an object
	Section 37.4: Safe Monkey patching with Reﬁnements
	Section 37.5: Changing a method with parameters
	Section 37.6: Adding Functionality
	Section 37.7: Changing any method
	Section 37.8: Extending an existing class

	Chapter 38: Recursion in Ruby
	Section 38.1: Tail recursion
	Section 38.2: Recursive function

	Chapter 39: Splat operator (*)
	Section 39.1: Variable number of arguments
	Section 39.2: Coercing arrays into parameter list

	Chapter 40: JSON with Ruby
	Section 40.1: Using JSON with Ruby
	Section 40.2: Using Symbols

	Chapter 41: Pure RSpec JSON API testing
	Section 41.1: Testing Serializer object and introducing it to Controller

	Chapter 42: Gem Creation/Management
	Section 42.1: Gemspec Files
	Section 42.2: Building A Gem
	Section 42.3: Dependencies

	Chapter 43: rbenv
	Section 43.1: Uninstalling a Ruby
	Section 43.2: Install and manage versions of Ruby with rbenv

	Chapter 44: Gem Usage
	Section 44.1: Installing ruby gems
	Section 44.2: Gem installation from github/ﬁlesystem
	Section 44.3: Checking if a required gem is installed from within code
	Section 44.4: Using a Gemﬁle and Bundler
	Section 44.5: Bundler/inline (bundler v1.10 and later)

	Chapter 45: Singleton Class
	Section 45.1: Introduction
	Section 45.2: Inheritance of Singleton Class
	Section 45.3: Singleton classes
	Section 45.4: Message Propagation with Singleton Class
	Section 45.5: Reopening (monkey patching) Singleton Classes
	Section 45.6: Accessing Singleton Class
	Section 45.7: Accessing Instance/Class Variables in Singleton Classes

	Chapter 46: Queue
	Section 46.1: Multiple Workers One Sink
	Section 46.2: Converting a Queue into an Array
	Section 46.3: One Source Multiple Workers
	Section 46.4: One Source - Pipeline of Work - One Sink
	Section 46.5: Pushing Data into a Queue - #push
	Section 46.6: Pulling Data from a Queue - #pop
	Section 46.7: Synchronization - After a Point in Time
	Section 46.8: Merging Two Queues

	Chapter 47: Destructuring
	Section 47.1: Overview
	Section 47.2: Destructuring Block Arguments

	Chapter 48: Struct
	Section 48.1: Creating new structures for data
	Section 48.2: Customizing a structure class
	Section 48.3: Attribute lookup

	Chapter 49: Metaprogramming
	Section 49.1: Implementing "with" using instance evaluation
	Section 49.2: send() method
	Section 49.3: Deﬁning methods dynamically
	Section 49.4: Deﬁning methods on instances

	Chapter 50: Dynamic Evaluation
	Section 50.1: Instance evaluation
	Section 50.2: Evaluating a String
	Section 50.3: Evaluating Inside a Binding
	Section 50.4: Dynamically Creating Methods from Strings

	Chapter 51: instance_eval
	Section 51.1: Instance evaluation
	Section 51.2: Implementing with

	Chapter 52: Message Passing
	Section 52.1: Introduction
	Section 52.2: Message Passing Through Inheritance Chain
	Section 52.3: Message Passing Through Module Composition
	Section 52.4: Interrupting Messages

	Chapter 53: Keyword Arguments
	Section 53.1: Using arbitrary keyword arguments with splat operator
	Section 53.2: Using keyword arguments
	Section 53.3: Required keyword arguments

	Chapter 54: Truthiness
	Section 54.1: All objects may be converted to booleans in Ruby
	Section 54.2: Truthiness of a value can be used in if-else constructs

	Chapter 55: Implicit Receivers and Understanding Self
	Section 55.1: There is always an implicit receiver
	Section 55.2: Keywords change the implicit receiver
	Section 55.3: When to use self?

	Chapter 56: Introspection
	Section 56.1: View an object's methods
	Section 56.2: View an object's Instance Variables
	Section 56.3: View Global and Local Variables
	Section 56.4: View Class Variables

	Chapter 57: Reﬁnements
	Section 57.1: Monkey patching with limited scope
	Section 57.2: Dual-purpose modules (reﬁnements or global patches)
	Section 57.3: Dynamic reﬁnements

	Chapter 58: Catching Exceptions with Begin / Rescue
	Section 58.1: A Basic Error Handling Block
	Section 58.2: Saving the Error
	Section 58.3: Checking for Dierent Errors
	Section 58.4: Retrying
	Section 58.5: Checking Whether No Error Was Raised
	Section 58.6: Code That Should Always Run

	Chapter 59: Command Line Apps
	Section 59.1: How to write a command line tool to get the weather by zip code

	Chapter 60: IRB
	Section 60.1: Starting an IRB session inside a Ruby script
	Section 60.2: Basic Usage

	Chapter 61: ERB
	Section 61.1: Parsing ERB

	Chapter 62: Generate a random number
	Section 62.1: 6 Sided die
	Section 62.2: Generate a random number from a range (inclusive)

	Chapter 63: Getting started with Hanami
	Section 63.1: About Hanami
	Section 63.2: How to install Hanami?
	Section 63.3: How to start the server?

	Chapter 64: OptionParser
	Section 64.1: Mandatory and optional command line options
	Section 64.2: Default values
	Section 64.3: Long descriptions

	Chapter 65: Operating System or Shell commands
	Section 65.1: Recommended ways to execute shell code in Ruby:
	Section 65.2: Clasic ways to execute shell code in Ruby:

	Chapter 66: C Extensions
	Section 66.1: Your ﬁrst extension
	Section 66.2: Working with C Structs
	Section 66.3: Writing Inline C - RubyInLine

	Chapter 67: Debugging
	Section 67.1: Stepping through code with Pry and Byebug

	Chapter 68: Ruby Version Manager
	Section 68.1: How to create gemset
	Section 68.2: Installing Ruby with RVM

	Appendix A: Installation
	Section A.1: Installing Ruby macOS
	Section A.2: Gems
	Section A.3: Linux - Compiling from source
	Section A.4: Linux—Installation using a package manager
	Section A.5: Windows - Installation using installer
	Section A.6: Linux - troubleshooting gem install

	Credits
	You may also like

